
SailPoint RESTful API Guidelines
Github Repository

Other formats: PDF, EPUB3

Table of Contents
SailPoint RESTful API Guidelines . 1

1. Introduction. 5

Conventions used in these guidelines . 5

SailPoint specific information. 5

2. Principles . 6

API design principles. 6

API as a product . 6

API first . 7

3. General guidelines . 8

MUST follow SailPoint API Guidelines . 8

SHOULD follow API first principle . 8

MUST provide API specification using OpenAPI . 8

MUST provide detailed API description . 9

SHOULD provide API user manual . 9

MUST describe every parameter and property . 9

MUST provide an example for every parameter and property . 9

SHOULD keep operation summaries at five or less words . 10

MUST provide a valid operationId in camelCase for each operation . 10

MUST provide a valid tag for each operation . 12

MUST write APIs using U.S. English . 12

4. Meta information . 12

MUST contain API meta information . 12

MUST use semantic versioning . 12

MUST provide API audience . 13

5. Security . 14

MUST secure endpoints with OAuth 2.0 . 14

MUST define and assign permissions (scopes) . 15

MUST define user levels (capabilities) needed by an endpoint . 16

MUST Document necessary license add-on to use an API collection . 16

MUST follow naming convention for permissions (scopes) . 17

1

https://github.com/sailpoint-oss/sailpoint-api-guidelines
sailpoint-guidelines.pdf
sailpoint-guidelines.epub

6. Compatibility . 17

MUST not break backward compatibility . 17

SHOULD prefer compatible extensions . 17

MUST prepare clients to accept compatible API extensions . 18

SHOULD design APIs conservatively . 18

MUST always return JSON objects as top-level data structures . 19

MUST treat OpenAPI specification as open for extension by default . 19

SHOULD avoid versioning . 20

MUST use URI versioning . 20

MUST follow versioned API requirements . 20

MUST follow beta API requirements . 21

7. Deprecation . 21

SHOULD Confer with clients on accepted deprecation time-span . 22

MUST reflect deprecation in API specifications . 22

MUST monitor usage of deprecated API scheduled for sunset. 22

SHOULD add Deprecation and Sunset header to responses . 22

SHOULD add monitoring for Deprecation and Sunset header . 23

MUST not start using deprecated APIs . 23

8. JSON guidelines. 23

SHOULD pluralize array names. 23

MUST property names must be ASCII camelCase . 24

MUST declare enum values using UPPER_SNAKE_CASE string . 24

SHOULD define maps using additionalProperties . 24

MUST not use null for boolean properties . 25

MUST define a default value for boolean properties . 25

SHOULD avoid using qualifying verbs. 25

SHOULD use positive semantics for boolean fields . 25

MUST use a field name that suggests the value type when referencing an object 26

SHOULD name references to foreign objects as <objectName>Ref . 26

SHOULD avoid using nested objects . 27

MUST define a default for optional values . 28

MUST define the “required” attribute for request/response objects and parameters 28

MUST use same semantics for null and absent properties . 28

MUST use the “nullable” attribute for properties that can be null . 28

MUST not use null for empty arrays. 29

SHOULD define dates properties compliant with RFC 3339 . 29

SHOULD define time durations and intervals properties conform to ISO 8601 29

9. Data formats . 29

MUST use JSON as payload data interchange format . 29

MAY pass non-JSON media types using data specific standard formats . 30

SHOULD use standard media types . 30

2

MUST use standardized property formats . 30

MUST use standard date and time formats . 31

MUST use standards for country, language and currency codes . 32

MUST define format for number and integer types . 32

MUST use proper description format for the filters query param . 33

MUST use proper description format for the sorters query param . 34

10. Common data types . 35

MUST use the common money object. 35

MUST use common field names and semantics . 37

11. API naming . 37

MUST/SHOULD use functional naming schema . 37

MUST use lowercase separate words with hyphens for path segments. 37

MUST camelCase for query parameters. 37

MUST pluralize resource names . 38

MUST not use /api as base path . 38

MUST use normalized paths without empty path segments and trailing slashes 38

MUST stick to conventional query parameters . 39

MUST Customer org name must never appear in the path of public APIs . 39

12. Resources . 39

SHOULD avoid actions — think about resources . 39

SHOULD model complete business processes . 40

SHOULD define useful resources . 40

SHOULD keep URLs verb-free . 40

MUST use domain-specific resource names . 40

MUST use URL-friendly resource identifiers: [a-zA-Z0-9:._\-/]*. 41

MUST identify resources and sub-resources via path segments . 41

SHOULD consider using (non-)nested URLs . 41

MUST not use sequential, numerical IDs . 42

SHOULD limit number of resource types . 42

SHOULD limit number of sub-resource levels . 42

13. HTTP requests and responses . 42

MUST use HTTP methods correctly . 42

MUST fulfill common method properties . 47

SHOULD consider to design POST and PATCH idempotent . 48

MAY use secondary key for idempotent POST design . 49

MUST define collection format of header and query parameters . 49

SHOULD design simple query languages using query parameters. 49

MUST design complex query languages using JSON. 50

MUST document implicit filtering . 51

14. HTTP status codes and errors . 52

MUST specify success and error responses . 52

3

MUST use a standard error response object . 53

MAY define application specific codes for the standard error response object. 53

MUST use the most accurate response example for each endpoint . 53

MUST use standard HTTP status codes. 53

MUST use most specific HTTP status codes . 55

MUST use code 207 for batch or bulk requests . 56

MUST use code 429 with headers for rate limits . 57

MUST support problem JSON . 57

MUST not expose stack traces. 58

15. Performance . 58

SHOULD support partial responses via filtering . 58

SHOULD allow optional embedding of sub-resources . 59

16. Pagination . 60

MUST support pagination . 60

MAY use pagination links where applicable. 60

17. Hypermedia. 61

MUST use REST maturity level 2 . 61

SHOULD use full, absolute URI . 61

MUST use common hypertext controls . 62

MUST not use link headers with JSON entities . 63

18. Standard headers . 63

MAY use standardized headers . 63

SHOULD use uppercase separate words with hyphens for HTTP headers . 63

MUST use Content-* headers correctly. 63

SHOULD use Location header instead of Content-Location header. 64

MAY use Content-Location header. 64

MAY consider to support Prefer header to handle processing preferences . 65

MAY consider to support ETag together with If-Match/If-None-Match header. 66

MAY consider to support Idempotency-Key header. 67

19. API Operation . 68

MUST publish OpenAPI specification . 68

MUST monitor API usage . 68

Appendix A: References . 69

OpenAPI specification. 69

Publications, specifications and standards . 69

Dissertations . 69

Books. 70

Blogs . 70

Appendix B: Tooling. 70

API first integrations . 70

Appendix C: Best practices . 70

4

1. Introduction
SailPoint’s SaaS software architecture centers around microservices that provide functionality via
RESTful APIs with a JSON payload. Small engineering teams own, deploy and operate these
microservices. Our APIs most purely express what our systems do, and are therefore highly
valuable business assets. Designing high-quality, long-lasting APIs has become even more critical
for us as we invest more in our SaaS platform and enabling customers and partners to build
functionalty outside of our UI.

With this in mind, we’ve adopted "API First" as one of our key engineering principles. Microservices
development begins with API definition outside the code and ideally involves ample peer-review
feedback to achieve high-quality APIs. API First encompasses a set of quality-related standards and
fosters a peer review culture including a lightweight review procedure. We encourage our teams to
follow them to ensure that our APIs:

• are easy to understand and learn

• are general and abstracted from specific implementation and use cases

• are robust and easy to use

• have a common look and feel

• follow a consistent RESTful style and syntax

• are consistent with other teams’ APIs and our global architecture

Ideally, all SailPoint APIs will look like the same author created them.

Conventions used in these guidelines
The requirement level keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" used in this document
(case insensitive) are to be interpreted as described in RFC 2119.

SailPoint specific information
The purpose of our "RESTful API guidelines" is to define standards to successfully establish
"consistent API look and feel" quality. The SailPoint API Guild drafted and owns this document.
Teams are responsible to fulfill these guidelines during API development and are encouraged to
contribute to guideline evolution via pull requests.

These guidelines will, to some extent, remain work in progress as our work evolves, but teams can
confidently follow and trust them.

Cursor-based pagination in RESTful APIs . 70

Optimistic locking in RESTful APIs . 72

Appendix D: Changelog. 76

Rule Changes . 76

5

https://www.ietf.org/rfc/rfc2119.txt

In case guidelines are changing, following rules apply:

• existing APIs don’t have to be changed, but we recommend it

• clients of existing APIs have to cope with these APIs based on outdated rules

• new APIs have to respect the current guidelines

Furthermore you should keep in mind that once an API becomes public externally available, it has
to be re-reviewed and changed according to current guidelines - for sake of overall consistency.

2. Principles

API design principles
Comparing SOA web service interfacing style of SOAP vs. REST, the former tend to be centered
around operations that are usually use-case specific and specialized. In contrast, REST is centered
around business (data) entities exposed as resources that are identified via URIs and can be
manipulated via standardized CRUD-like methods using different representations, and hypermedia.
RESTful APIs tend to be less use-case specific and come with less rigid client / server coupling and
are more suitable for an ecosystem of (core) services providing a platform of APIs to build diverse
new business services. We apply the RESTful web service principles to all kind of application
(micro-) service components, independently from whether they provide functionality via the
internet or intranet.

• We prefer REST-based APIs with JSON payloads

• We prefer systems to be truly RESTful [1]

An important principle for API design and usage is Postel’s Law, aka The Robustness Principle (see
also RFC 1122):

• Be liberal in what you accept, be conservative in what you send

Readings: Some interesting reads on the RESTful API design style and service architecture:

• Article: REST API Design - Resource Modeling

• Article: Richardson Maturity Model — Steps toward the glory of REST

• Book: Irresistable APIs: Designing web APIs that developers will love

• Book: REST in Practice: Hypermedia and Systems Architecture

• Book: Build APIs You Won’t Hate

• Fielding Dissertation: Architectural Styles and the Design of Network-Based Software
Architectures

API as a product
At SailPoint, we want to deliver products to our (internal and external) customers which can be
consumed like a service. Platform products provide their functionality via (public) APIs; hence, the

6

http://en.wikipedia.org/wiki/Robustness_principle
https://tools.ietf.org/html/rfc1122
https://www.thoughtworks.com/de/insights/blog/rest-api-design-resource-modeling
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.amazon.de/Irresistible-APIs-Designing-that-developers/dp/1617292559
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

design of our APIs should be based on the API as a Product principle:

• Treat your API as product and act like a product owner

• Put yourself into the place of your customers; be an advocate for their needs

• Emphasize simplicity, comprehensibility, and usability of APIs to make them irresistible for
client engineers

• Actively improve and maintain API consistency over the long term

• Make use of customer feedback and provide service level support

Embracing 'API as a Product' facilitates a service ecosystem, which can be evolved more easily and
used to experiment quickly with new business ideas by recombining core capabilities. It makes the
difference between agile, innovative product service business built on a platform of APIs and
ordinary enterprise integration business where APIs are provided as "appendix" of existing
products to support system integration and optimised for local server-side realization.

Understand the concrete use cases of your customers and carefully check the trade-offs of your API
design variants with a product mindset. Avoid short-term implementation optimizations at the
expense of unnecessary client side obligations, and have a high attention on API quality and client
developer experience.

API as a Product is closely related to our API First principle (see next chapter) which is more
focused on how we engineer high quality APIs.

API first
API First is one of our engineering and architecture principles. In a nutshell API First requires two
aspects:

• define APIs first, before coding its implementation, using a standard specification language

• get early review feedback from peers and client developers

By defining APIs outside the code, we want to facilitate early review feedback and also a
development discipline that focus service interface design on…

• profound understanding of the domain and required functionality

• generalized business entities / resources, i.e. avoidance of use case specific APIs

• clear separation of WHAT vs. HOW concerns, i.e. abstraction from implementation aspects —
APIs should be stable even if we replace complete service implementation including its
underlying technology stack

Moreover, API definitions with standardized specification format also facilitate…

• single source of truth for the API specification; it is a crucial part of a contract between service
provider and client users

• infrastructure tooling for API discovery, API GUIs, API documents, automated quality checks

Elements of API First are also this API Guidelines and a standardized API review process as to get

7

early review feedback from peers and client developers. Peer review is important for us to get high
quality APIs, to enable architectural and design alignment and to supported development of client
applications decoupled from service provider engineering life cycle.

It is important to learn, that API First is not in conflict with the agile development principles that
we love. Service applications should evolve incrementally — and so its APIs. Of course, our API
specification will and should evolve iteratively in different cycles; however, each starting with draft
status and early team and peer review feedback. API may change and profit from implementation
concerns and automated testing feedback. API evolution during development life cycle may include
breaking changes for not yet productive features and as long as we have aligned the changes with
the clients. Hence, API First does not mean that you must have 100% domain and requirement
understanding and can never produce code before you have defined the complete API and get it
confirmed by peer review.

On the other hand, API First obviously is in conflict with the bad practice of publishing API
definition and asking for peer review after the service integration or even the service productive
operation has started. It is crucial to request and get early feedback — as early as possible, but not
before the API changes are comprehensive with focus to the next evolution step and have a certain
quality (including API Guideline compliance), already confirmed via team internal reviews.

3. General guidelines
The titles are marked with the corresponding labels: MUST, SHOULD, MAY.

MUST follow SailPoint API Guidelines
You must design your APIs consistently with these guidelines; use our API linter for automated rule
checks, but not every rule can be automated.

SHOULD follow API first principle
You should follow the API First Principle, more specifically:

• You should define APIs first, before coding their implementation, using OpenAPI as the
specification language

• You should call for early review feedback from peers and client developers

MUST provide API specification using OpenAPI
We use the OpenAPI specification as the standard to define API specification files. OpenAPI 3.0 must
be supported, but you MAY support other versions, like Swagger 2.

The API specification files should be subject to version control using a source code management
system.

You must publish the component API specification with the deployment of the implementing
service, and, hence, make it discoverable for the appropriate group via our API Portal.

8

https://swagger.io/specification/
https://developer.sailpoint.com/

MUST provide detailed API description
Within the API specification, you must provide sufficient information in the description of the API
to facilitate proper usage. This may include:

• API scope, purpose, and use cases

• Major edge cases

• Major dependencies

SHOULD provide API user manual
In addition to the API Specification, it is good practice to provide a separate API user manual to
improve client developer experience, especially of engineers that are less experienced in using this
API. A helpful API user manual typically describes the following API aspects:

• concrete examples of API usage

• edge cases, error situation details, and repair hints

• architecture context and dependencies - including figures and sequence flows

The user manual must be published online, e.g. via our documentation hosting platform service.
Please do not forget to include a link to the API user manual into the API specification using the
#/externalDocs/url property.

This manual does not have to be created by engineering, but could be created by a
documentation team, Developer Relations or by community effort. It is important
to provide extra documentation for our developers to reduce the number of
support related questions that come in.

MUST describe every parameter and property
Every query/path parameter and request/response property in the API specification must have a
description

MUST provide an example for every parameter and
property
Every query/path parameter and request/response property in the API specification must have an
accurate example. An accurate example will show the API consumer what an input/output value
will realistically look like, and could even be used in a real request/response. However, take care to
not use personally identifiable information or secrets in examples.

Every operation (POST, PUT, PATCH, etc) may define one or more operation level examples.

9

SHOULD keep operation summaries at five or less
words
Certain tools, like Postman, have a limit on how many words can be displayed within the operation
summary. It is helpful for consumers to have short summaries that describe the operation at its
most basic level to improve readability for consumers.

MUST provide a valid operationId in camelCase for
each operation
operationId is a unique string used to identify an operation. These IDs must be unique among all
operations described in your API.

Certain tools, like the OpenAPI Generator use this value to name the corresponding methods in
code.

The following listAccessProfiles is an example of an operationId.

get:
 operationId: listAccessProfiles
 tags:
 - Access Profiles
 summary: List Access Profiles
 description: >-
 This API returns a list of Access Profiles.

Use this guide when creating your operationIds. Your operationId must start with one of the
approved values for each method.

GET methods that return an array

• compare

• export

• get

• list

• search

GET methods that return a single result

• get

• search

• test

POST methods

10

• approve

• cancel

• complete

• create

• delete

• disable

• enable

• export

• hide

• import

• move

• ping

• reject

• reset

• search

• send

• set

• show

• start

• submit

• sync

• unlock

• unregister

• update

PUT methods

• put

• set

PATCH methods

• patch

• update

DELETE methods

• delete

• remove

11

MUST provide a valid tag for each operation
Each operation must be assigned exactly one tag that categorizes it. No operation should have more
than one tag.

This tag must also exist in the root specification.

get:
 operationId: listAccessProfiles
 tags:
 - Access Profiles

MUST write APIs using U.S. English

4. Meta information

MUST contain API meta information
API specifications must contain the following OpenAPI meta information to allow for API
management:

• #/info/title as (unique) identifying, functional descriptive name of the API

• #/info/version to distinguish API specifications versions following semantic rules

• #/info/description containing a proper description of the API

• #/info/x-audience intended target audience of the API (see rule 219)

We’ll automatically generate #/info/contact/* when creating the public Open API
spec.

MUST use semantic versioning
OpenAPI allows to specify the API specification version in #/info/version. To share a common
semantic of version information we expect API designers to comply to Semantic Versioning 2.0
rules 1 to 8 and 11 restricted to the format <MAJOR>.<MINOR>.<PATCH> for versions as follows:

• Increment the MAJOR version when you make incompatible API changes after having aligned
this changes with consumers,

• Increment the MINOR version when you add new functionality in a backwards-compatible
manner, and

• Optionally increment the PATCH version when you make backwards-compatible bug fixes or
editorial changes not affecting the functionality.

Additional Notes:

12

http://semver.org/spec/v2.0.0.html

• Pre-release versions (rule 9) and build metadata (rule 10) must not be used in API version
information.

• While patch versions are useful for fixing typos etc, API designers are free to decide whether
they increment it or not.

• API designers should consider to use API version 0.y.z (rule 4) for initial API design.

Example:

openapi: 3.0.1
info:
 title: Parcel Service API
 description: API for <...>
 version: 1.3.7
 <...>

We’ll automatically generate the global #/info/version when creating public Open
API spec. Each individual endpoint spec author need not worry about this
attribute.

MUST provide API audience
Each API must be classified with respect to the intended target audience supposed to consume the
API, to facilitate differentiated standards on APIs for discoverability, changeability, quality of design
and documentation, as well as permission granting. We differentiate the following API audience
groups with clear organizational and legal boundaries:

internal-company external-public

This is only for documentation generation purposes and not related to
authorization—authz concerns must be addressed with normal policies.

/info/x-audience:
 type: string
 x-extensible-enum:
 - internal-company
 - external-public
 description: |
 Intended target audience of the API. Relevant for standards around
 quality of design and documentation, reviews, discoverability,
 changeability.

Exactly one audience per API specification is allowed. For this reason a smaller
audience group is intentionally included in the wider group and thus does not
need to be declared additionally. If parts of your API have a different target
audience, we recommend to split API specifications along the target audience —

13

http://semver.org#spec-item-9
http://semver.org#spec-item-10
http://semver.org/#spec-item-4

even if this creates redundancies (rationale (internal link)).

Example:

openapi: 3.0.1
info:
 x-audience: internal-company
 title: Service to Service API
 description: API for <...>
 version: 1.2.4
 <...>

5. Security

MUST secure endpoints with OAuth 2.0
Every public API endpoint must be secured using OAuth 2.0. We have defined two security schemas,
userAuth and applicationAuth. In the rare case that an endpoint does not require authentication,
and is completely open to the public, then an empty object can be used instead.

• userAuth is the authentication mechanism that assigns a user context to a token, such as a
Personal Access Token or OAuth token granted via authorization code.

• applicationAuth is the authentication mechanism that provides a token that does not have a
user context. This is a result of the OAuth client credentials grant flow.

• {} is how we indicate that an endpoint does not require authentication to access.

Each endpoint must select one or both of the security schemes depending on which one(s) it
supports. For example, if an endpoint supports only userAuth, then the path would be defined as
follows:

get:
 operationId: getAccessProfile
 tags:
 - Access Profiles
 summary: Get an Access Profile
 description: >-
 This API returns an Access Profile by its ID.
 security:
 - userAuth: [idn:access-profile:read]

If the endpoint supports both security schemes, then it would be defined as follows:

get:
 operationId: getAccessProfile
 tags:

14

 - Access Profiles
 summary: Get an Access Profile
 description: >-
 This API returns an Access Profile by its ID.
 security:
 - userAuth: [idn:access-profile:read]
 - applicationAuth: [idn:access-profile:read]

If the endpoint does not require authentication, then it would be defined as follows:

get:
 operationId: getAccessProfile
 tags:
 - Access Profiles
 summary: Get an Access Profile
 description: >-
 This API returns an Access Profile by its ID.
 security:
 - {}

MUST define and assign permissions (scopes)
Each endpoint must document every scope needed to access the endpoint. See Defining Scopes for
API Authorization for more information on adding new scopes.

To appropriately document a scope on an endpoint, use the following OpenAPI properties:

security:
 - userAuth:
 - 'idn:task-definition:read'
 - 'idn:task-definition:manage'

A full example on an endpoint might look like this:

get:
 tags:
 - tenants
 summary: Get Tenant
 description: Get tenant object based on current auth token
 operationId: getTenant
 responses:
 '200':
 description: successful operation
 content:
 application/json:
 schema:
 $ref: '../schemas/Tenant.yaml'

15

https://sailpoint.atlassian.net/wiki/spaces/PLAT/pages/1713963123/Defining+Scopes+for+API+Authorization
https://sailpoint.atlassian.net/wiki/spaces/PLAT/pages/1713963123/Defining+Scopes+for+API+Authorization

 security:
 - userAuth:
 - 'idn:accounts:read'

MUST define user levels (capabilities) needed by an
endpoint
Each endpoint that specifies userAuth as one of the allowed security types must also document the
user levels required to access the endpoint. See the user level matrix for more information.

To appropriately document user level(s) on an endpoint, use the x-sailpoint-userLevels attribute
in the path definition. The technical name must be used as seen in the user level matrix (ex.
ORG_ADMIN instead of Admin).

x-sailpoint-userLevels:
 - ORG_ADMIN
 - SOURCE_ADMIN

A full example on an endpoint might look like this:

get:
 tags:
 - tenants
 summary: Get Tenant
 description: Get tenant object based on current auth token
 operationId: getTenant
 responses:
 '200':
 description: successful operation
 content:
 application/json:
 schema:
 $ref: '../schemas/Tenant.yaml'
 security:
 - userAuth:
 - 'idn:accounts:read'
 x-sailpoint-userLevels:
 - ORG_ADMIN
 - SOURCE_ADMIN

MUST Document necessary license add-on to use an
API collection
If an API collection requires additional product licenses to enable the feature, then each required
license must be documented in the API collection description.

16

https://documentation.sailpoint.com/saas/help/common/users/user_level_matrix.html

MUST follow naming convention for permissions
(scopes)
TBD

6. Compatibility

MUST not break backward compatibility
Change APIs, but keep all consumers running. Consumers usually have independent release
lifecycles, focus on stability, and avoid changes that do not provide additional value. APIs are
contracts between service providers and service consumers that cannot be broken via unilateral
decisions.

There are two techniques to change APIs without breaking them:

• follow rules for compatible extensions

• introduce new API versions and still support older versions

We strongly encourage using compatible API extensions and discourage versioning (see SHOULD
avoid versioning and MUST use URI versioning below). The following guidelines for service
providers (SHOULD prefer compatible extensions) and consumers (MUST prepare clients to accept
compatible API extensions) enable us (having Postel’s Law in mind) to make compatible changes
without versioning.

Note: There is a difference between incompatible and breaking changes. Incompatible changes are
changes that are not covered by the compatibility rules below. Breaking changes are incompatible
changes deployed into operation, and thereby breaking running API consumers. Usually,
incompatible changes are breaking changes when deployed into operation. However, in specific
controlled situations it is possible to deploy incompatible changes in a non-breaking way, if no API
consumer is using the affected API aspects (see also Deprecation guidelines).

Hint: Please note that the compatibility guarantees are for the "on the wire" format. Binary or
source compatibility of code generated from an API definition is not covered by these rules. If client
implementations update their generation process to a new version of the API definition, it has to be
expected that code changes are necessary.

SHOULD prefer compatible extensions
API designers should apply the following rules to evolve RESTful APIs for services in a backward-
compatible way:

• Add only optional, never mandatory fields.

• Never change the semantic of fields (e.g. changing the semantic from customer-number to
customer-id, as both are different unique customer keys)

• Input fields may have (complex) constraints being validated via server-side business logic.

17

Never change the validation logic to be more restrictive and make sure that all constraints are
clearly defined in description.

• Enum ranges can be reduced when used as input parameters, only if the server is ready to
accept and handle old range values too. Enum range can be reduced when used as output
parameters.

• Enum ranges cannot be extended when used for output parameters — clients may not be
prepared to handle it. However, enum ranges can be extended when used for input parameters.

• Support redirection in case an URL has to change 301 (Moved Permanently).

MUST prepare clients to accept compatible API
extensions
Service clients should apply the robustness principle:

• Be conservative with API requests and data passed as input, e.g. avoid to exploit definition
deficits like passing megabytes of strings with unspecified maximum length.

• Be tolerant in processing and reading data of API responses, more specifically…

Service clients must be prepared for compatible API extensions of service providers:

• Be tolerant with unknown fields in the payload (see also Fowler’s "TolerantReader" post), i.e.
ignore new fields but do not eliminate them from payload if needed for subsequent PUT
requests.

• Be prepared that x-extensible-enum return parameter may deliver new values; either be
agnostic or provide default behavior for unknown values.

• Be prepared to handle HTTP status codes not explicitly specified in endpoint definitions. Note
also, that status codes are extensible. Default handling is how you would treat the
corresponding 2xx code (see RFC 7231 Section 6).

• Follow the redirect when the server returns HTTP status code 301 (Moved Permanently).

SHOULD design APIs conservatively
Designers of service provider APIs should be conservative and accurate in what they accept from
clients:

• Unknown input fields in payload or URL should not be ignored; servers should provide error
feedback to clients via an HTTP 400 response code.

• Be accurate in defining input data constraints (like formats, ranges, lengths etc.) — and check
constraints and return dedicated error information in case of violations.

• Prefer being more specific and restrictive (if compliant to functional requirements), e.g. by
defining length range of strings. It may simplify implementation while providing freedom for
further evolution as compatible extensions.

Not ignoring unknown input fields is a specific deviation from Postel’s Law (e.g. see also

18

#status-code-301
http://martinfowler.com/bliki/TolerantReader.html
#put
#112
#http-status-codes-and-errors
https://tools.ietf.org/html/rfc7231#section-6
#status-code-301

The Robustness Principle Reconsidered) and a strong recommendation. Servers might want to take
different approach but should be aware of the following problems and be explicit in what is
supported:

• Ignoring unknown input fields is actually not an option for PUT, since it becomes asymmetric
with subsequent GET response and HTTP is clear about the PUT replace semantics and default
roundtrip expectations (see RFC 7231 Section 4.3.4). Note, accepting (i.e. not ignoring) unknown
input fields and returning it in subsequent GET responses is a different situation and compliant
to PUT semantics.

• Certain client errors cannot be recognized by servers, e.g. attribute name typing errors will be
ignored without server error feedback. The server cannot differentiate between the client
intentionally providing an additional field versus the client sending a mistakenly named field,
when the client’s actual intent was to provide an optional input field.

• Future extensions of the input data structure might be in conflict with already ignored fields
and, hence, will not be compatible, i.e. break clients that already use this field but with different
type.

In specific situations, where a (known) input field is not needed anymore, it either can stay in the
API definition with "not used anymore" description or can be removed from the API definition as
long as the server ignores this specific parameter.

MUST always return JSON objects as top-level data
structures
In a response body, you must always return a JSON object (and not e.g. an array) as a top level data
structure to support future extensibility. JSON objects support compatible extension by additional
attributes. This allows you to easily extend your response and e.g. add pagination later, without
breaking backwards compatibility. See MAY use pagination links where applicable for an example.

Maps (see SHOULD define maps using additionalProperties), even though technically objects, are
also forbidden as top level data structures, since they don’t support compatible, future extensions.

MUST treat OpenAPI specification as open for
extension by default
The OpenAPI specification is not very specific on default extensibility of objects, and redefines
JSON-Schema keywords related to extensibility, like additionalProperties. Following our
compatibility guidelines, OpenAPI object definitions are considered open for extension by default
as per Section 5.18 "additionalProperties" of JSON-Schema.

When it comes to OpenAPI, this means an additionalProperties declaration is not required to make
an object definition extensible:

• API clients consuming data must not assume that objects are closed for extension in the absence
of an additionalProperties declaration and must ignore fields sent by the server they cannot
process. This allows API servers to evolve their data formats.

19

https://cacm.acm.org/magazines/2011/8/114933-the-robustness-principle-reconsidered/fulltext
#put
#get
#put
https://tools.ietf.org/html/rfc7231#section-4.3.4
#get
#put
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.18

• For API servers receiving unexpected data, the situation is slightly different. Instead of ignoring
fields, servers may reject requests whose entities contain undefined fields in order to signal to
clients that those fields would not be stored on behalf of the client. API designers must
document clearly how unexpected fields are handled for PUT, POST, and PATCH requests.

API formats must not declare additionalProperties to be false, as this prevents objects being
extended in the future.

Note that this guideline concentrates on default extensibility and does not exclude the use of
additionalProperties with a schema as a value, which might be appropriate in some circumstances,
e.g. see SHOULD define maps using additionalProperties.

SHOULD avoid versioning
When changing your RESTful APIs, do so in a compatible way and avoid generating additional API
versions. Multiple versions can significantly complicate understanding, testing, maintaining,
evolving, operating and releasing our systems (supplementary reading).

If changing an API can’t be done in a compatible way, then proceed in one of these three ways:

• create a new resource (variant) in addition to the old resource variant

• create a new service endpoint — i.e. a new application with a new API (with a new domain
name)

• create a new API version supported in parallel with the old API by the same microservice

MUST use URI versioning
SailPoint uses URI versioning with the following structure:

/v{version number}

Ex. /v3, /v4, etc.

Note: Beta APIs fall under /beta.

MUST follow versioned API requirements
All versioned APIs must adhere to the following requirements

• Can be internal or external.

• NO BREAKING CHANGES! (barring necessary security fixes)

• Supported (sev-1!)

• Documented in OpenAPI specification format

• Minimum 2 year support obligation

Breaking changes include, but are not limited to, the following:

20

#put
#post
#patch
http://martinfowler.com/articles/enterpriseREST.html

• Removal of fields on resource models

• Changing an existing field on a post/put/patch from optional to required (or not permitted)

• Removal of resources

• URI changes

• New or different response status codes

• Other semantic changes (including new values in enumerated types if those values are part of
the API contract)

• Example: Consider a list API that returns multiple object types with a common standardized
representation and the objects have a TYPE field. Adding a new TYPE value would represent a
breaking change UNLESS the the contract for the API specifies that new types may be added. If
there is no means of filtering based on TYPE in this example, this is probably an unacceptable
term for the API contract.

If in doubt, ask! Call out any uncertainties during API review or during the design process.

Non-breaking changes may be added to an existing live version. Here are some examples of non-
breaking changes:

• New fields on response models (that do not change the meaning of the model)

• Making a currently required field on an input model optional

• Adding new optional fields to input models (as long as the default value of the field preserves
the previous meaning of the model)

• Net new resources

• New query parameters and filterable/sortable fields (as long as they are optional and the
existing behavior is preserved if the new parameters are not passed)

MUST follow beta API requirements
• Beta route in styx (example: "beta/sim-integrations")

• Supported (during business hours, no sev-1s)

• Documented in OpenAPI specification format (and marked as beta)

• Breaking changes must be announced ahead of time to all stakeholders

• Can be internal or external.

• This is expected to be a stable, usable API that is available for external and internal integration.

7. Deprecation
Sometimes it is necessary to phase out an API endpoint, an API version, or an API feature, e.g. if a
field or parameter is no longer supported or a whole business functionality behind an endpoint is
supposed to be shut down. As long as the API endpoints and features are still used by consumers
these shut downs are breaking changes and not allowed. To progress the following deprecation
rules have to be applied to make sure that the necessary consumer changes and actions are well

21

communicated and aligned using deprecation and sunset dates.

SHOULD Confer with clients on accepted deprecation
time-span
Before shutting down an API, version of an API, or API feature the producer should make sure that
all clients have given their consent on a sunset date. Producers should help consumers to migrate to
a potential new API or API feature by providing a migration manual and clearly state the time line
for replacement availability and sunset (see also SHOULD add Deprecation and Sunset header to
responses). The producer should wait for all clients of a sunset API feature to migrate before
shutting down the deprecated API.

MUST reflect deprecation in API specifications
The API deprecation must be part of the API specification.

If an API endpoint (operation object), an input argument (parameter object), an in/out data object
(schema object), or on a more fine grained level, a schema attribute or property should be
deprecated, the producers must set deprecated: true for the affected element and add further
explanation to the description section of the API specification. If a future shut down is planned, the
producer must provide a sunset date and document in details what consumers should use instead
and how to migrate.

MUST monitor usage of deprecated API scheduled for
sunset
Owners of an API, API version, or API feature used in production that is scheduled for sunset must
monitor the usage of the sunset API, API version, or API feature in order to observe migration
progress and avoid uncontrolled breaking effects on ongoing consumers. See also MUST monitor
API usage.

Must notify customers using deprecated APIs on a timely basis to help them move onto newer APIs,
especially as the API moves closer to its sunset date.

SHOULD add Deprecation and Sunset header to
responses
During the deprecation phase, the producer should add a Deprecation: <date-time> (see draft: RFC
Deprecation HTTP Header) and - if also planned - a Sunset: <date-time> (see RFC 8594) header on
each response affected by a deprecated element (see MUST reflect deprecation in API
specifications).

The Deprecation header can either be set to true - if a feature is retired -, or carry a deprecation time
stamp, at which a replacement will become/became available and consumers must not on-board
any longer (see MUST not start using deprecated APIs). The optional Sunset time stamp carries the

22

https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594#section-3
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594

information when consumers latest have to stop using a feature. The sunset date should always
offer an eligible time interval for switching to a replacement feature.

Deprecation: Tue, 31 Dec 2024 23:59:59 GMT
Sunset: Wed, 31 Dec 2025 23:59:59 GMT

If multiple elements are deprecated the Deprecation and Sunset headers are expected to be set to the
earliest time stamp to reflect the shortest interval consumers are expected to get active.

Note: adding the Deprecation and Sunset header is not sufficient to gain client consent to shut down
an API or feature.

Hint: In earlier guideline versions, we used the Warning header to provide the deprecation info to
clients. However, Warning header has a less specific semantics, will be obsolete with draft: RFC HTTP
Caching, and our syntax was not compliant with RFC 7234 — Warning header.

SHOULD add monitoring for Deprecation and Sunset
header
Clients should monitor the Deprecation and Sunset headers in HTTP responses to get information
about future sunset of APIs and API features (see SHOULD add Deprecation and Sunset header to
responses). We recommend that client owners build alerts on this monitoring information to
ensure alignment with service owners on required migration task.

Hint: In earlier guideline versions, we used the Warning header to provide the deprecation info (see
hint in SHOULD add Deprecation and Sunset header to responses).

MUST not start using deprecated APIs
Clients must not start using deprecated APIs, API versions, or API features.

8. JSON guidelines
These guidelines provides recommendations for defining JSON data at SailPoint. JSON here refers to
RFC 7159 (which updates RFC 4627), the "application/json" media type and custom JSON media
types defined for APIs. The guidelines clarifies some specific cases to allow SailPoint JSON data to
have an idiomatic form across teams and services.

The first some of the following guidelines are about property names, the later ones about values.

SHOULD pluralize array names
Names of arrays should be pluralized to indicate that they contain multiple values. This implies in
turn that object names should be singular.

23

https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-ietf-httpbis-cache-06
https://tools.ietf.org/html/draft-ietf-httpbis-cache-06
https://tools.ietf.org/html/rfc7234#page-29
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc4627

MUST property names must be ASCII camelCase
Property names are restricted to ASCII strings. The first character must be a lower case letter, there
must not be any spaces, and new words should start with a capital letter instead of a space. For
example, “new client table” would be “newClientTable” in camelCase.

“ID” is common in field names, and must be presented in camel case as follows:

• If “ID” appears as the first word, then it is entirely lowercase (ex. “id”).

• If “ID” appears after the first word, then the “I” is capitalized and the “d” is lowercase (ex.
“userId”).

MUST declare enum values using UPPER_SNAKE_CASE
string
Enumerations must be represented as string typed OpenAPI definitions of request parameters or
model properties. Enum values (using enum or x-extensible-enum) need to consistently use the
upper-snake case format, e.g. VALUE or YET_ANOTHER_VALUE. This approach allows to clearly
distinguish values from properties or other elements.

Exception: This rule does not apply for case sensitive values sourced from outside API definition
scope, e.g. for language codes from ISO 639-1, or when declaring possible values for a rule 137 [sort
parameter].

SHOULD define maps using additionalProperties
A "map" here is a mapping from string keys to some other type. In JSON this is represented as an
object, the key-value pairs being represented by property names and property values. In OpenAPI
schema (as well as in JSON schema) they should be represented using additionalProperties with a
schema defining the value type. Such an object should normally have no other defined properties.

The map keys don’t count as property names in the sense of rule 118, and can follow whatever
format is natural for their domain. Please document this in the description of the map object’s
schema.

Here is an example for such a map definition (the translations property):

components:
 schemas:
 Message:
 description:
 A message together with translations in several languages.
 type: object
 properties:
 message_key:
 type: string
 description: The message key.

24

#112
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

 translations:
 description:
 The translations of this message into several languages.
 The keys are [IETF BCP-47 language
tags](https://tools.ietf.org/html/bcp47).
 type: object
 additionalProperties:
 type: string
 description:
 the translation of this message into the language identified by the key.

An actual JSON object described by this might then look like this:

{ "message_key": "color",
 "translations": {
 "de": "Farbe",
 "en-US": "color",
 "en-GB": "colour",
 "eo": "koloro",
 "nl": "kleur"
 }
}

MUST not use null for boolean properties
Schema based JSON properties that are by design booleans must not be presented as nulls. A
boolean is essentially a closed enumeration of two values, true and false. If the content has a
meaningful null value, strongly prefer to replace the boolean with enumeration of named values or
statuses - for example accepted_terms_and_conditions with true or false can be replaced with
terms_and_conditions with values yes, no and unknown.

MUST define a default value for boolean properties
All optional boolean properties must have a default value defined. If the property is required, it is
not required to have a default value.

SHOULD avoid using qualifying verbs
Avoid using qualifying verbs, especially on boolean fields, e.g.

• Discouraged: isEnabled

• Recommended: enabled

SHOULD use positive semantics for boolean fields
The name of a Boolean field should preferably express semantics such that true indicates a positive

25

attribute, action, capability, etc.

• Discouraged: "disabled": true

• Recommended: "enabled": false

MUST use a field name that suggests the value type
when referencing an object
When a field contains an ID or reference to an foreign object, not the parent object, the field name
should suggest the value type:

• Discouraged: "owner": "2c90b0c06460804b016460f9f59b0015"

• Recommended: "ownerId": "2c90b0c06460804b016460f9f59b0015"

For example, the following request/response for an account object uses the proper naming for
object references.

“id” refers to the account object being requested, and all other object references include the object
reference name (i.e. sourceId, identityId, etc.)

{
 "id": "id12345",
 "name": "aName",
 "created": "2019-08-24T14:15:22Z",
 "modified": "2019-08-24T14:15:22Z",
 "sourceId": "2c9180835d2e5168015d32f890ca1581",
 "identityId": "2c9180835d2e5168015d32f890ca1581",
 "attributes": { },
 "authoritative": true,
 "description": "string",
 "disabled": true,
 "locked": true,
 "nativeIdentity": "string",
 "systemAccount": true,
 "uncorrelated": true,
 "uuid": "string",
 "manuallyCorrelated": true,
 "hasEntitlements": true
}

SHOULD name references to foreign objects as
<objectName>Ref

• Discouraged: "launcher": "frank.dogs"

• Recommended: "launcherRef": {"resource": "identities", "type": "ALIAS", "value": "frank.dogs"}

26

Example

{
 "id": "2c9180857182305e0171993735622948",
 "name": "Alison Ferguso",
 "alias": "alison.ferguso",
 "email": "alison.ferguso@acme-solar.com",
 "status": "Active",
 "managerRef": {
 "type": "IDENTITY",
 "id": "2c9180a46faadee4016fb4e018c20639",
 "name": "Thomas Edison"
 },
 "attributes":[]
}

SHOULD avoid using nested objects
In general, we discourage nesting DTOs inside others. This has typically led to bloated DTOs and
made it complicated to enforce authorization requirements and other business rules around those
nested objects. It is preferable instead for the DTO to have a field containing an id or reference that
allows the nested object to be separately fetched.

It is recognized, of course, that particular use cases may require nesting objects inside each other.
For example, if a UI module needs to display data from a set of 100 IdentityRequests and their child
IdentityRequestItems, it makes no sense to require the UI to make one API call to get the list of
IdentityRequests and then 100 additional calls to get the IdentityRequestItems for each.

It is preferable in these cases to use a summary DTO for the nested objects that contains the
minimum amount of detail required to support the known or plausible use case(s). For example, if
the only reason I need to include the owner of an object is so the caller can display their first and
last name, then it is better to do something like the following:

{
 ...
 "owner": {
 "type": "IDENTITY",
 "id": "2c90b0c06460804b016460f9f59b001",
 "firstName": "Frank",
 "lastName": "Dogs"
 }
}

One particular valid use of nested objects occurs when a DTO abstracts over a set of types that may
have significantly different attributes. In this case the non-general fields of the DTO should be
pushed down to a nested object, with a type field on the main object being used as a discriminator.
For example, if a DTO could represent either an Access Profile or a Role, the former case could be

27

implemented as follows:

{
 ...
 "type": "ACCESS_PROFILE",
 ...
 "accessProfileInfo": {
 "appRefs": ["app1", "app2"]
 },
 "roleInfo": null
}

MUST define a default for optional values
All properties must define a default value for optional properties. This must documented in the
specification so clients know what value will be used should they ignore a property.

MUST define the “required” attribute for
request/response objects and parameters
All request/response schemas MUST define the “required” attribute for each property and
parameter per the OpenAPI specification.

For request/response objects, see https://swagger.io/docs/specification/data-models/data-types/#
required. If all properties within an object are optional, then the "required" attribute may be
omitted.

For path and query parameters, see https://swagger.io/docs/specification/describing-parameters/

Generally, query parameters should be optional, but there are cases where a query parameter is
required. In these cases, make sure to set the “required” attribute for the query parameters to true.

MUST use same semantics for null and absent
properties
TBD

MUST use the “nullable” attribute for properties that
can be null
If a property or parameter can return null, then it must have the nullable: true OpenAPI property.

28

https://swagger.io/docs/specification/data-models/data-types/#required
https://swagger.io/docs/specification/data-models/data-types/#required
https://swagger.io/docs/specification/describing-parameters/

MUST not use null for empty arrays
Empty array values can unambiguously be represented as the empty list, [].

SHOULD define dates properties compliant with RFC
3339
Use the date and time formats defined by RFC 3339:

• for "date" use strings matching date-fullyear "-" date-month "-" date-mday, for example: 2015-
05-28

• for "date-time" use strings matching full-date "T" full-time, for example 2015-05-28T14:07:17Z

Note that the OpenAPI format "date-time" corresponds to "date-time" in the RFC) and 2015-05-28 for
a date (note that the OpenAPI format "date" corresponds to "full-date" in the RFC). Both are specific
profiles, a subset of the international standard ISO 8601.

A zone offset may be used (both, in request and responses) — this is simply defined by the
standards. However, we encourage restricting dates to UTC and without offsets. For example 2015-
05-28T14:07:17Z rather than 2015-05-28T14:07:17+00:00. From experience we have learned that zone
offsets are not easy to understand and often not correctly handled. Note also that zone offsets are
different from local times that might be including daylight saving time. Localization of dates should
be done by the services that provide user interfaces, if required.

When it comes to storage, all dates should be consistently stored in UTC without a zone offset.
Localization should be done locally by the services that provide user interfaces, if required.

Sometimes it can seem data is naturally represented using numerical timestamps, but this can
introduce interpretation issues with precision, e.g. whether to represent a timestamp as
1460062925, 1460062925000 or 1460062925.000. Date strings, though more verbose and requiring
more effort to parse, avoid this ambiguity.

SHOULD define time durations and intervals
properties conform to ISO 8601
Schema based JSON properties that are by design durations and intervals could be strings
formatted as recommended by ISO 8601 (Appendix A of RFC 3339 contains a grammar for
durations).

9. Data formats

MUST use JSON as payload data interchange format
Use JSON (RFC 7159) to represent structured (resource) data passed with HTTP requests and
responses as body payload. The JSON payload must use a JSON object as top-level data structure (if

29

https://tools.ietf.org/html/rfc3339#section-5.6
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://tools.ietf.org/html/rfc3339#appendix-A
https://tools.ietf.org/html/rfc7159

possible) to allow for future extension. This also applies to collection resources, where you ad-hoc
would use an array — see also MUST always return JSON objects as top-level data structures.

Additionally, the JSON payload must comply to the more restrictive Internet JSON (RFC 7493),
particularly

• Section 2.1 on encoding of characters, and

• Section 2.3 on object constraints.

As a consequence, a JSON payload must

• use UTF-8 encoding

• consist of valid Unicode strings, i.e. must not contain non-characters or surrogates, and

• contain only unique member names (no duplicate names).

MAY pass non-JSON media types using data specific
standard formats
TBD

SHOULD use standard media types
You should use standard media types (defined in media type registry of Internet Assigned Numbers
Authority (IANA)) as content-type (or accept) header information. More specifically, for JSON
payload you should use the standard media type application/json (or application/problem+json for
MUST support problem JSON).

You should avoid using custom media types like application/x.sailpoint.article+json. Custom
media types beginning with x bring no advantage compared to the standard media type for JSON,
and make automated processing more difficult.

MUST encode embedded binary data in base64url

Exposing binary data using an alternative media type is generally preferred. See the rule above.

If an alternative content representation is not desired then binary data should be embedded into
the JSON document as a base64url-encoded string property following RFC 7493 Section 4.4.

MUST use standardized property formats
JSON Schema and OpenAPI define several data formats, e.g. date, time, email, and url, based on ISO
and IETF standards. The following table lists these formats including additional formats useful in
an e-commerce environment. You should use these formats, whenever applicable.

type format Specification Example

integer int32 7721071004

30

https://tools.ietf.org/html/rfc7493
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.3
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.3
https://www.iana.org/assignments/media-types/media-types.xhtml
https://tools.ietf.org/html/rfc7493#section-4.4
https://json-schema.org/understanding-json-schema/reference/string.html#format
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#data-types

type format Specification Example

integer int64 772107100456824

integer bigint 77210710045682438959

number float IEEE 754-2008 3.1415927

number double IEEE 754-2008 3.141592653589793

number decimal 3.141592653589793238462643383279

string bcp47 BCP 47 "en-DE"

string byte RFC 7493 "dGVzdA=="

string date RFC 3339 "2019-07-30"

string date-time RFC 3339 "2019-07-30T06:43:40.252Z"

string email RFC 5322 "example@sailpoint.de"

string gtin-13 GTIN "5710798389878"

string hostname RFC 1034 "www.sailpoint.de"

string ipv4 RFC 2673 "104.75.173.179"

string ipv6 RFC 2673 "2600:1401:2::8a"

string iso-3166 ISO 3166-1 alpha-2 "DE"

string iso-4217 ISO 4217 "EUR"

string iso-639 ISO 639-1 "de"

string json-pointer RFC 6901 "/items/0/id"

string password "secret"

string regex ECMA 262 "^[a-z0-9]+$"

string time RFC 3339 "06:43:40.252Z"

string uri RFC 3986 "https://www.sailpoint.de/"

string uri-template RFC 6570 "/users/{id}"

string uuid RFC 4122 "e2ab873e-b295-11e9-9c02-…"

Remark: Please note that this list of standard data formats is not exhaustive and everyone is
encouraged to propose additions.

MUST use standard date and time formats

JSON payload

Read more about date and time format in SHOULD define dates properties compliant with RFC
3339.

HTTP headers

Http headers including the proprietary headers use the HTTP date format defined in RFC 7231.

31

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/rfc7493
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc5322
mailto:example@sailpoint.de
https://en.wikipedia.org/wiki/Global_Trade_Item_Number
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc2673
https://tools.ietf.org/html/rfc2673
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/rfc6901
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc7231#section-7.1.1.1

MUST use standards for country, language and
currency codes
Use the following standard formats for country, language and currency codes:

• Country codes: ISO 3166-1-alpha2 two letter country codes

◦ Hint: It is "GB", not "UK", even though "UK" has seen some use at sailpoint

• Language codes: ISO 639-1 two letter language codes

• Language variant tags: BCP 47

◦ It is a compatible extension of ISO 639-1, providing additional information for language
usage, like region (using ISO 3166-1), variant, script and others.

• Currency codes: ISO 4217 three letter currency codes

MUST define format for number and integer types
Whenever an API defines a property of type number or integer, the precision must be defined by the
format as follows to prevent clients from guessing the precision incorrectly, and thereby changing
the value unintentionally:

type format specified value range

integer int32 integer between -231 and 231-1

integer int64 integer between -263 and 263-1

integer bigint arbitrarily large signed integer number

number float IEEE 754-2008/ISO 60559:2011 binary32 decimal number

number double IEEE 754-2008/ISO 60559:2011 binary64 decimal number

number decimal arbitrarily precise signed decimal number

The precision must be translated by clients and servers into the most specific language types. E.g.
for the following definitions the most specific language types in Java will translate to BigDecimal for
Money.amount and int or Integer for the OrderList.page_size:

components:
 schemas:
 Money:
 type: object
 properties:
 amount:
 type: number
 description: Amount expressed as a decimal number of major currency units
 format: decimal
 example: 99.95
 ...

32

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/bcp47
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

 OrderList:
 type: object
 properties:
 page_size:
 type: integer
 description: Number of orders in list
 format: int32
 example: 42

MUST use proper description format for the filters
query param
The OpenAPI specification does not provide dedicated properties for defining filters, so filters must
be defined in the description of the filters query param. Our users and our tooling rely on filter
descriptions following a strict format. The following snippet is an example of how to properly
format the description for filters.

in: query
name: filters
schema:
 type: string
description: >-
 Filter results using the standard syntax described in [V3 API Standard Collection
Parameters](https://developer.sailpoint.com/idn/api/standard-collection-
parameters#filtering-results)

 Filtering is supported for the following fields and operators:

 id: *eq, in*

 name: *eq, sw*

 created: *gt, lt, ge, le*

 modified: *gt, lt, ge, le*

 owner.id: *eq, in*

 requestable: *eq*

33

 source.id: *eq, in*
example: name eq "SailPoint Support"
required: false

• Always include the first two lines in your description to point users towards the extended
documenation.

• Always use two new lines between lines. The use of one new line will result in the text not
displaying on separate lines in the API documentaiton.

• Always bold the property name using two asterisks before and after the name.

• Only document one property per line.

• Always italicize the operators by using a single asterisk before an after the list of operators.

• Only use the operators listed here. If you are introducing a new operator not in the list, please
contact the Developer Relations team to update the list.

• Always use a comma and a space to separate operators.

• Do not add any additional text in the description, such as examples, clarifications, etc.

MUST use proper description format for the sorters
query param
The OpenAPI specification does not provide dedicated properties for defining sorter, so sorters
must be defined in the description of the sorters query param. Our users and our tooling rely on
filter descriptions following a strict format. The following snippet is an example of how to properly
format the description for sorters.

in: query
name: sorters
schema:
 type: string
 format: comma-separated
description: >-
 Sort results using the standard syntax described in [V3 API Standard Collection
Parameters](https://developer.sailpoint.com/idn/api/standard-collection-
parameters#sorting-results)

 Sorting is supported for the following fields: **name, created, modified**
example: name,-modified
required: false

• Always include the first line in your description to point users towards the extended
documenation.

• Always use two new lines between lines. The use of one new line will result in the text not
displaying on separate lines in the API documentaiton.

34

https://developer.sailpoint.com/idn/api/standard-collection-parameters#filter-syntax

• The second line must start with "Sorting is supported for the following fields:"

• Wrap all supported properties in double asterisks to make them bold.

• Use a comma and a space to separate supported properties.

• Do not add any additional lines or text in the description. There should only be two lines: the
extended documentation and the list of supporter properties.

10. Common data types
Definitions of data objects that are good candidates for wider usage. Below you can find a list of
common data types used in the guideline:

• Money object

• Problem object

MUST use the common money object
Use the following common money structure:

Money:
 type: object
 properties:
 amount:
 type: number
 description: >
 The amount describes unit and subunit of the currency in a single value,
 where the integer part (digits before the decimal point) is for the
 major unit and fractional part (digits after the decimal point) is for
 the minor unit.
 format: decimal
 example: 99.95
 currency:
 type: string
 description: 3 letter currency code as defined by ISO-4217
 format: iso-4217
 example: EUR
 required:
 - amount
 - currency

APIs are encouraged to include a reference to the global schema for Money.

SalesOrder:
 properties:
 grand_total:
 $ref: 'https://sailpoint-oss.github.io/sailpoint-api-guidelines/money-

35

1.0.0.yaml#/Money'

Please note that APIs have to treat Money as a closed data type, i.e. it’s not meant to be used in an
inheritance hierarchy. That means the following usage is not allowed:

{
 "amount": 19.99,
 "currency": "EUR",
 "discounted_amount": 9.99
}

Cons

• Violates the Liskov Substitution Principle

• Breaks existing library support, e.g. Jackson Datatype Money

• Less flexible since both amounts are coupled together, e.g. mixed currencies are impossible

A better approach is to favor composition over inheritance:

{
 "price": {
 "amount": 19.99,
 "currency": "EUR"
 },
 "discounted_price": {
 "amount": 9.99,
 "currency": "EUR"
 }
}

Pros

• No inheritance, hence no issue with the substitution principle

• Makes use of existing library support

• No coupling, i.e. mixed currencies is an option

• Prices are now self-describing, atomic values

Notes

Please be aware that some business cases (e.g. transactions in Bitcoin) call for a higher precision, so
applications must be prepared to accept values with unlimited precision, unless explicitly stated
otherwise in the API specification.

Examples for correct representations (in EUR):

36

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://github.com/zalando/jackson-datatype-money
https://en.wikipedia.org/wiki/Composition_over_inheritance

• 42.20 or 42.2 = 42 Euros, 20 Cent

• 0.23 = 23 Cent

• 42.0 or 42 = 42 Euros

• 1024.42 = 1024 Euros, 42 Cent

• 1024.4225 = 1024 Euros, 42.25 Cent

Make sure that you don’t convert the "amount" field to float / double types when implementing this
interface in a specific language or when doing calculations. Otherwise, you might lose precision.
Instead, use exact formats like Java’s BigDecimal. See Stack Overflow for more info.

Some JSON parsers (NodeJS’s, for example) convert numbers to floats by default. After discussing
the pros and cons we’ve decided on "decimal" as our amount format. It is not a standard OpenAPI
format, but should help us to avoid parsing numbers as float / doubles.

MUST use common field names and semantics
TBD

11. API naming

MUST/SHOULD use functional naming schema
TBD

MUST use lowercase separate words with hyphens for
path segments

• Use kebab-case for path segments

• Use {camelCase} with surrounding brackets to indicate path parameters

Example:

/shipment-orders/{shipmentOrderId}

MUST camelCase for query parameters
Examples:

customerNumber, orderId, billingAddress

We need to have a consistent look and feel for our APIs. In the case of query parameters, which can
reference actual properties in the response object, camelCase preserves a consistent look and feel.

37

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://stackoverflow.com/a/3730040/342852

MUST pluralize resource names
When defining a path segment for a collection, the resource name must be plural to indicate it is a
collection of resources.

Example:

/users, /companies/{companyId}/employees/{employeeId}

MUST not use /api as base path
In most cases, all resources provided by a service are part of the public API, and therefore should
be made available under the root "/" base path.

If the service should also support non-public, internal APIs — for specific operational support
functions, for example — we encourage you to maintain two different API specifications and
provide API audience. For both APIs, you should not use /api as base path.

We see API’s base path as a part of deployment variant configuration. Therefore, this information
has to be declared in the server object.

MUST use normalized paths without empty path
segments and trailing slashes
You must not specify paths with duplicate or trailing slashes, e.g. /customers//addresses or
/customers/. As a consequence, you must also not specify or use path variables with empty string
values.

Reasoning: Non standard paths have no clear semantics. As a result, behavior for non standard
paths varies between different HTTP infrastructure components and libraries. This may leads to
ambiguous and unexpected results during request handling and monitoring.

We recommend to implement services robust against clients not following this rule. All services
should normalize request paths before processing by removing duplicate and trailing slashes.
Hence, the following requests should refer to the same resource:

GET /orders/{orderId}
GET /orders/{orderId}/
GET /orders//{orderId}

Note: path normalization is not supported by all framework out-of-the-box. Services are required to
support at least the normalized path while rejecting all alternatives paths, if failing to deliver the
same resource.

38

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#server-object
https://en.wikipedia.org/wiki/URI_normalization

MUST stick to conventional query parameters
If you provide query support for searching, sorting, filtering, and paginating, you must stick to the
following naming conventions:

Pagination

• limit: Integer that specifies the maximum number of results to return. If not specified a default
limit will be used.

• offest: Integer that specifies the offset of the first result from the beginning of the collection

• count: Boolean that indicates whether a total count will be returned, factoring in any filter
parameters, in the X-Total-Count response header.

filters: an item will only be included in the returned array if the filters expression evaluates to
true for that item. Each endpoint that implements filters must clearly define in the API spec what
operations and fields are supported.

sorters: a set of comma-separated field names. Each field name may be optionally prefixed with a "-
" character, which indicates the sort is descending based on the value of that field. Otherwise, the
sort is ascending. Each endpoint that implements sorters must clearly define which fields are
supported.

See https://developer.sailpoint.com/docs/standard_collection_parameters.html#standard-collection-
parameters for implementation details for each of the above parameters.

Note: Additional query parameters are allowed, but effort should be made to fit them within the
five listed above.

MUST Customer org name must never appear in the
path of public APIs
The customer organization is provided in the session context that is generated on the back end, and
therefore does not need to be in the URL.

12. Resources

SHOULD avoid actions — think about resources
REST is all about your resources, so consider the domain entities that take part in web service
interaction, and aim to model your API around these using the standard HTTP methods as
operation indicators. For example, rather than creating a specific action for completing a
certification campaign, prefer to use PATCH to update the completed status of the campaign.

Request

39

https://developer.sailpoint.com/docs/standard_collection_parameters.html#standard-collection-parameters
https://developer.sailpoint.com/docs/standard_collection_parameters.html#standard-collection-parameters

PATCH v1/campaigns/{campaignId}

Body

{
 “completed”: true
}

Sometimes, standard HTTP methods aren’t specific enough to indicate the action you wish to
perform on a resource, or there is complex business logic on the back end that can’t be satisfied by
PATCHing a single field. In these cases, it is advisable to use the following URI format for specific
resource actions:

Request

POST v1/campaigns/{campaignId}/remediation-scan

SHOULD model complete business processes
TBD

SHOULD define useful resources
As a rule of thumb resources should be defined to cover 90% of all its client’s use cases. A useful
resource should contain as much information as necessary, but as little as possible. A great way to
support the last 10% is to allow clients to specify their needs for more/less information by
supporting filtering and embedding.

SHOULD keep URLs verb-free
The API describes resources, so the only place where actions should appear is in the HTTP methods.
In URLs, use only nouns. Instead of thinking of actions (verbs), it’s often helpful to think about
putting a message in a letter box: e.g., instead of having the verb cancel in the url, think of sending a
message to cancel an order to the cancellations letter box on the server side.

MUST use domain-specific resource names
API resources represent elements of the application’s domain model. Using domain-specific
nomenclature for resource names helps developers to understand the functionality and basic
semantics of your resources. It also reduces the need for further documentation outside the API
definition. For example, "sales-order-items" is superior to "order-items" in that it clearly indicates
which business object it represents. Along these lines, "items" is too general.

40

MUST use URL-friendly resource identifiers: [a-zA-Z0-
9:._\-/]*
TBD

MUST identify resources and sub-resources via path
segments
Some API resources may contain or reference sub-resources. Sub-resources should be referenced
by their name and identifier in the path segments as follows:

/resources/{resourceId}/sub-resources/{subResourceId}

In order to improve the consumer experience, you should aim for intuitively understandable URLs,
where each sub-path is a valid reference to a resource or a set of resources. For instance, if
/partners/{partnerId}/addresses/{addressId} is valid, then, in principle, also
/partners/{partnerId}/addresses, /partners/{partnerId} and /partners must be valid. Examples of
concrete url paths:

/shopping-carts/de:1681e6b88ec1/items/1
/shopping-carts/de:1681e6b88ec1
/content/images/9cacb4d8
/content/images

Note: resource identifiers may be build of multiple other resource identifiers.

Exception: In some situations the resource identifier is not passed as a path segment but via the
authorization information, e.g. an authorization token or session cookie. Here, it is reasonable to
use self as pseudo-identifier path segment. For instance, you may define /employees/self or
/employees/self/personal-details as resource paths —  and may additionally define endpoints that
support identifier passing in the resource path, like define /employees/{emplId} or
/employees/{emplId}/personal-details.

SHOULD consider using (non-)nested URLs
If a sub-resource is only accessible via its parent resource and may not exist without parent
resource, consider using a nested URL structure, for instance:

/shoping-carts/de/1681e6b88ec1/cart-items/1

However, if the resource can be accessed directly via its unique id, then the API should expose it as
a top-level resource. For example, customer has a collection for sales orders; however, sales orders
have globally unique id and some services may choose to access the orders directly, for instance:

41

/customers/1637asikzec1
/sales-orders/5273gh3k525a

MUST not use sequential, numerical IDs
Numerical, sequential IDs are considered a security risk because malicious actors can enumerate
through the IDs to obtain unauthorized information. API producers must use GUIDs or natural keys
that aren’t sequential.

SHOULD limit number of resource types
TBD

SHOULD limit number of sub-resource levels
There are main resources (with root url paths) and sub-resources (or nested resources with non-
root urls paths). Use sub-resources if their life cycle is (loosely) coupled to the main resource, i.e. the
main resource works as collection resource of the subresource entities. You should use ⇐ 3 sub-
resource (nesting) levels — more levels increase API complexity and url path length. (Remember,
some popular web browsers do not support URLs of more than 2000 characters.)

13. HTTP requests and responses

MUST use HTTP methods correctly
Be compliant with the standardized HTTP method semantics summarized as follows:

Creating an Object

POST requests are idiomatically used to create single resources on a collection resource endpoint,
but other semantics on single resources endpoint are equally possible. The semantic for collection
endpoints is best described as "please add the enclosed representation to the collection resource
identified by the URL". The semantic for single resource endpoints is best described as "please
execute the given well specified request on the resource identified by the URL".

• Modeled as POST /…/plural-noun, where plural-noun indicates the type of object being created.

• on a successful POST request, the server will create one or multiple new resources and provide
their URI/URLs in the response

• successful POST requests will usually generate 200 (if resources have been updated), 201 (if
resources have been created), 202 (if the request was accepted but has not been finished yet),
and exceptionally 204 with Location header (if the actual resource is not returned).

• If the POST is used to create or update a resource, then the response payload needs to include
every field from the request, and may include additional fields.

42

#post

• If the POST is used as an action, then the response may be different from the request schema.

• Specifying a value for a system-generated field in the input results in a 400 Bad Request
response.

Note: By using POST to create resources the resource ID must not be passed as request input date by
the client, but created and maintained by the service and returned with the response payload.

Apart from resource creation, POST should be also used for scenarios that cannot be covered by the
other methods sufficiently. However, in such cases make sure to document the fact that POST is used
as a workaround (see e.g. GET with body).

Hint: Posting the same resource twice is not required to be idempotent (check MUST fulfill
common method properties) and may result in multiple resources. However, you SHOULD
consider to design POST and PATCH idempotent to prevent this.

Reading a Single Object

• Modeled as GET /…/plural-noun/{nounId}

• On success, returns a 200 with the DTO.

• A 404 is returned if the referenced object is not found.

• Query params are allowed, for example, to return the object at different levels of detail.

• Is free of side-effects.

Reading a List of Objects

• Modeled as GET /…/plural-noun.

• For API version 3, on success, returns a 200 with an array of objects.

[
 {
 "id": "123",
 "name": "John"
 },
 ...
]

• Proposed for API version 4, on success, returns a 200 with a JSON array of objects enveloped
inside an object. By returning an object as the top level for all responses, we allow our APIs to
extend without breaking backwards compatibility. If there was ever a need to add an additional
field to a response that returns an array (ex. pagination links in the body), then we would need
to break the API by wrapping it in an object. By requiring objects at the top level from the start,
we avoid this in the future.

{
 "results": [...],
 "count": ...

43

#post
#post
#post
#get-with-body

}

• Supports pagination via limit and offset query parameters unless the back end data store
makes this impossible or prohibitively expensive.

• The default value for limit is 250 unless the endpoint documentation states otherwise.

• The standard filters query parameter is preferred over custom filtering query params.

• If filters are used, the supported fields and operations are whitelisted. Unsupported filters
should result in an error response.

• If filters refer to fields in nested objects, then "." notation is used, for example
filters=owner.name eq "leah.pierce"

• Custom query params are allowed if filters cannot be used.

• If at all possible, supports reading a list of objects by their ids, either in the form of a filter, i.e.
filters=id in (id0, id1, …, idN) or a custom query param.

• Use of single boolean-valued params should be avoided; strings, enumerated values, or comma-
separated values are preferred.

• The standard sorters query parameter may be used for sorting.

• If sorters are used, the supported fields are whitelisted.

• Results are not implicitly filtered or scoped based on the current logged in user. If such filtering
is required it is via an explicit query param taking an identity id. By convention, me can stand
in for the currently logged in user’s identity id as the value for such a param.

• Is free of side-effects.

Get with Body Payload

APIs sometimes face the problem, that they have to provide extensive structured request
information with GET, that may conflict with the size limits of clients, load-balancers, and servers.
As we require APIs to be standard conform (request body payload in GET must be ignored on
server side), API designers have to check the following two options:

1. GET with URL encoded query parameters: when it is possible to encode the request information
in query parameters, respecting the usual size limits of clients, gateways, and servers, this
should be the first choice. The request information can either be provided via multiple query
parameters or by a single structured URL encoded string.

2. POST with body payload content: when a GET with URL encoded query parameters is not
possible, a POST request with body payload must be used, and explicitly documented with a
hint like in the following example:

paths:
 /products:
 post:
 description: >
 [GET with body payload](https://sailpoint-oss.github.io/sailpoint-api-
guidelines/#get-with-body) - no resources created:

44

 Returns all products matching the query passed as request input payload.
 requestBody:
 required: true
 content:
 ...

Updating an Object by Full Replacement

Modeled as PUT /…/plural-noun/{nounId}

PUT requests are used to update (and sometimes to create) entire resources – single or collection
resources. The semantic is best described as "please put the enclosed representation at the resource
mentioned by the URL, replacing any existing resource.".

• PUT requests are usually applied to single resources, and not to collection resources, as this
would imply replacing the entire collection

• PUT requests are usually robust against non-existence of resources by implicitly creating the
resource before updating

• on successful PUT requests, the server will replace the entire resource addressed by the URL
with the representation passed in the payload (subsequent reads will deliver the same payload)

• successful PUT requests will usually generate 200 or 204 (if the resource was updated – with or
without actual content returned), and 201 (if the resource was created)

• Returns a 404 if the object does not exist and the endpoint does not support PUT as a means of
creation.

• Does a complete replacement of the referenced object and does not attempt to merge the input
DTO with the existing object.

Important: It is good practice to prefer POST over PUT for creation of (at least top-level) resources.
This leaves the resource ID management under control of the service and not the client, and focus
PUT on its usage for updates. However, in situations where PUT is used for resource creation, the
resource IDs are maintained by the client and passed as a URL path segment. Putting the same
resource twice is required to be idempotent and to result in the same single resource instance (see
MUST fulfill common method properties).

Hint: To prevent unnoticed concurrent updates and duplicate creations when using PUT, you MAY
consider to support ETag together with If-Match/If-None-Match header to allow the server to react on
stricter demands that expose conflicts and prevent lost updates. See also Optimistic locking in
RESTful APIs for details and options.

Updating an Object by Targeted Modification

PATCH requests are used to update parts of single resources, i.e. where only a specific subset of
resource fields should be replaced. The semantic is best described as "please change the resource
identified by the URL according to my change request". The semantic of the change request is not
defined in the HTTP standard and must be described in the API specification by using suitable
media types.

45

#put
#put
#put
#put
#put
#status-code-200
#status-code-204
#status-code-201
#post
#put
#put
#put
#put
#patch

• Modeled as PATCH /../plural-noun/{nounId}

• PATCH requests are usually applied to single resources as patching entire collection is challenging

• PATCH requests are usually not robust against non-existence of resource instances

• on successful PATCH requests, the server will update parts of the resource addressed by the URL
as defined by the change request in the payload

• successful PATCH requests will usually generate 200 or 204 (if resources have been updated with
or without updated content returned)

• Returns a 404 if the object does not exist.

• If synchronous, and the patch cannot be successfully applied, returns a 400.

• Mutable DTO fields are documented.

Deleting an Object

DELETE requests are used to delete resources. The semantic is best described as "please delete the
resource identified by the URL".

• Modeled as DELETE /../plural-noun/{nounId}

• DELETE requests are usually applied to single resources, not on collection resources, as this
would imply deleting the entire collection.

• DELETE request can be applied to multiple resources at once using query parameters on the
collection resource (see DELETE with query parameters).

• successful DELETE requests will usually generate 200 (if the deleted resource is returned) or 204
(if no content is returned).

• failed DELETE requests will usually generate 404 (if the resource cannot be found) or 410 (if the
resource was already deleted before).

Important: After deleting a resource with DELETE, a GET request on the resource is expected to either
return 404 (not found) or 410 (gone) depending on how the resource is represented after deletion.
Under no circumstances the resource must be accessible after this operation on its endpoint.

DELETE with query parameters

DELETE request can have query parameters. Query parameters should be used as filter parameters
on a resource and not for passing context information to control the operation behavior.

DELETE /resources?param1=value1¶m2=value2...¶mN=valueN

Note: When providing DELETE with query parameters, API designers must carefully document the
behavior in case of (partial) failures to manage client expectations properly.

The response status code of DELETE with query parameters requests should be similar to usual
DELETE requests. In addition, it may return the status code 207 using a payload describing the
operation results (see MUST use code 207 for batch or bulk requests for details).

46

#patch
#patch
#patch
#patch
#status-code-200
#status-code-204
#delete
#delete
#delete
#delete
#status-code-200
#status-code-204
#delete
#status-code-404
#status-code-410
#delete
#get
#status-code-404
#status-code-410
#delete
#delete
#delete
#delete
#status-code-207

DELETE with body payload

In rare cases DELETE may require additional information, that cannot be classified as filter
parameters and thus should be transported via request body payload, to perform the operation.
Since RFC-7231 states, that DELETE has an undefined semantic for payloads, we recommend to utilize
POST. In this case the POST endpoint must be documented with the hint DELETE with body analog to
how it is defined for GET with body. The response status code of DELETE with body requests should be
similar to usual DELETE requests.

HEAD (Optional)

HEAD requests are used to retrieve the header information of single resources and resource
collections.

• HEAD has exactly the same semantics as GET, but returns headers only, no body.

Hint: HEAD is particular useful to efficiently lookup whether large resources or collection resources
have been updated in conjunction with the ETag-header.

OPTIONS (Optional)

OPTIONS requests are used to inspect the available operations (HTTP methods) of a given endpoint.

• OPTIONS responses usually either return a comma separated list of methods in the Allow header
or as a structured list of link templates

Note: OPTIONS is rarely implemented, though it could be used to self-describe the full functionality
of a resource.

MUST fulfill common method properties
Request methods in RESTful services can be…

• safe - the operation semantic is defined to be read-only, meaning it must not have intended side
effects, i.e. changes, to the server state.

• idempotent - the operation has the same intended effect on the server state, independently
whether it is executed once or multiple times. Note: this does not require that the operation is
returning the same response or status code.

• cacheable - to indicate that responses are allowed to be stored for future reuse. In general,
requests to safe methods are cachable, if it does not require a current or authoritative response
from the server.

Note: The above definitions, of intended (side) effect allows the server to provide additional state
changing behavior as logging, accounting, pre- fetching, etc. However, these actual effects and state
changes, must not be intended by the operation so that it can be held accountable.

Method implementations must fulfill the following basic properties according to RFC 7231:

47

#delete
https://tools.ietf.org/html/rfc7231#section-4.3.5
#delete
#post
#delete-with-body
#get-with-body
#delete-with-body
#delete
#head
#head
#get
#head
https://tools.ietf.org/html/rfc7232#section-2.3
#options
#options
#options
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.3
https://tools.ietf.org/html/rfc7231

Method Safe Idempotent Cacheable

GET ✔ Yes ✔ Yes ✔ Yes

HEAD ✔ Yes ✔ Yes ✔ Yes

POST ✗ No ⚠️ No, but SHOULD consider to
design POST and PATCH idempotent

⚠️ May, but only if specific POST
endpoint is safe. Hint: not
supported by most caches.

PUT ✗ No ✔ Yes ✗ No

PATCH ✗ No ⚠️ No, but SHOULD consider to
design POST and PATCH idempotent

✗ No

DELETE ✗ No ✔ Yes ✗ No

OPTIONS ✔ Yes ✔ Yes ✗ No

TRACE ✔ Yes ✔ Yes ✗ No

SHOULD consider to design POST and PATCH idempotent
In many cases it is helpful or even necessary to design POST and PATCH idempotent for clients to
expose conflicts and prevent resource duplicate (a.k.a. zombie resources) or lost updates, e.g. if
same resources may be created or changed in parallel or multiple times. To design an idempotent
API endpoint owners should consider to apply one of the following three patterns.

• A resource specific conditional key provided via If-Match header in the request. The key is in
general a meta information of the resource, e.g. a hash or version number, often stored with it. It
allows to detect concurrent creations and updates to ensure idempotent behavior (see MAY
consider to support ETag together with If-Match/If-None-Match header).

• A resource specific secondary key provided as resource property in the request body. The
secondary key is stored permanently in the resource. It allows to ensure idempotent behavior by
looking up the unique secondary key in case of multiple independent resource creations from
different clients (see MAY use secondary key for idempotent POST design).

• A client specific idempotency key provided via Idempotency-Key header in the request. The key
is not part of the resource but stored temporarily pointing to the original response to ensure
idempotent behavior when retrying a request (see MAY consider to support Idempotency-Key
header).

Note: While conditional key and secondary key are focused on handling concurrent requests, the
idempotency key is focused on providing the exact same responses, which is even a stronger
requirement than the idempotency defined above. It can be combined with the two other patterns.

To decide, which pattern is suitable for your use case, please consult the following table showing
the major properties of each pattern:

Conditional Key Secondary Key Idempotency
Key

Applicable with PATCH POST POST/PATCH

48

#get
#head
#post
#post
#put
#patch
#delete
#options
#trace
#post
#patch
#230
#patch
#post
#post
#patch

Conditional Key Secondary Key Idempotency
Key

HTTP Standard ✔ Yes ✗ No ✗ No

Prevents duplicate (zombie) resources ✔ Yes ✔ Yes ✗ No

Prevents concurrent lost updates ✔ Yes ✗ No ✗ No

Supports safe retries ✔ Yes ✔ Yes ✔ Yes

Supports exact same response ✗ No ✗ No ✔ Yes

Can be inspected (by intermediaries) ✔ Yes ✗ No ✔ Yes

Usable without previous GET ✗ No ✔ Yes ✔ Yes

Note: The patterns applicable to PATCH can be applied in the same way to PUT and DELETE providing
the same properties.

If you mainly aim to support safe retries, we suggest to apply conditional key and secondary key
pattern before the Idempotency Key pattern.

MAY use secondary key for idempotent POST design
The most important pattern to design POST idempotent for creation is to introduce a resource
specific secondary key provided in the request body, to eliminate the problem of duplicate (a.k.a
zombie) resources.

The secondary key is stored permanently in the resource as alternate key or combined key (if
consisting of multiple properties) guarded by a uniqueness constraint enforced server-side, that is
visible when reading the resource. The best and often naturally existing candidate is a unique
foreign key, that points to another resource having one-on-one relationship with the newly created
resource, e.g. a parent process identifier.

A good example here for a secondary key is the shopping cart ID in an order resource.

Note: When using the secondary key pattern without Idempotency-Key all subsequent retries should
fail with status code 409 (conflict). We suggest to avoid 200 here unless you make sure, that the
delivered resource is the original one implementing a well defined behavior. Using 204 without
content would be a similar well defined option.

MUST define collection format of header and query
parameters
TBD

SHOULD design simple query languages using query
parameters
TBD

49

#get
#patch
#put
#delete
#post
#230
#status-code-409
#status-code-200
#status-code-204

MUST design complex query languages using JSON
Minimalistic query languages based on query parameters are suitable for simple use cases with a
small set of available filters that are combined in one way and one way only (e.g. and semantics).
Simple query languages are generally preferred over complex ones.

Some APIs will have a need for sophisticated and more complex query languages. Dominant
examples are APIs around search (incl. faceting) and product catalogs.

Aspects that set those APIs apart from the rest include but are not limited to:

• Unusual high number of available filters

• Dynamic filters, due to a dynamic and extensible resource model

• Free choice of operators, e.g. and, or and not

APIs that qualify for a specific, complex query language are encouraged to use nested JSON data
structures and define them using OpenAPI directly. The provides the following benefits:

• Data structures are easy to use for clients

◦ No special library support necessary

◦ No need for string concatenation or manual escaping

• Data structures are easy to use for servers

◦ No special tokenizers needed

◦ Semantics are attached to data structures rather than text tokens

• Consistent with other HTTP methods

• API is defined in OpenAPI completely

◦ No external documents or grammars needed

◦ Existing means are familiar to everyone

JSON-specific rules and most certainly needs to make use of the GET-with-body pattern.

Example

The following JSON document should serve as an idea how a structured query might look like.

{
 "and": {
 "name": {
 "match": "Alice"
 },
 "age": {
 "or": {
 "range": {
 ">": 25,
 "<=": 50

50

 },
 "=": 65
 }
 }
 }
}

Feel free to also get some inspiration from:

• Elastic Search: Query DSL

• GraphQL: Queries

MUST document implicit filtering
Sometimes certain collection resources or queries will not list all the possible elements they have,
but only those for which the current client is authorized to access.

Implicit filtering could be done on:

• the collection of resources being returned on a GET request

• the fields returned for the detail information of the resource

In such cases, the fact that implicit filtering is applied must be documented in the API
specification’s endpoint description. Example:

If an employee of the company Foo accesses one of our business-to-business service and performs a
GET /business-partners, it must, for legal reasons, not display any other business partner that is not
owned or contractually managed by her/his company. It should never see that we are doing
business also with company Bar.

Response as seen from a consumer working at FOO:

{
 "items": [
 { "name": "Foo Performance" },
 { "name": "Foo Sport" },
 { "name": "Foo Signature" }
]
}

Response as seen from a consumer working at BAR:

{
 "items": [
 { "name": "Bar Classics" },
 { "name": "Bar pour Elle" }
]

51

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://graphql.org/learn/queries/
#get
#get

}

The API Specification should then specify something like this:

paths:
 /business-partner:
 get:
 description: >-
 Get the list of registered business partner.
 Only the business partners to which you have access to are returned.

14. HTTP status codes and errors

MUST specify success and error responses
APIs should define the functional, business view and abstract from implementation aspects.
Success and error responses are a vital part to define how an API is used correctly.

Therefore, you must define all success and service specific error responses in your API
specification. Both are part of the interface definition and provide important information for
service clients to handle standard as well as exceptional situations.

Hint: In most cases it is not useful to document all technical errors, especially if they are not under
control of the service provider. Thus unless a response code conveys application-specific functional
semantics or is used in a none standard way that requires additional explanation, multiple error
response specifications can be combined using the following pattern:

responses:
 ...
 default:
 description: error occurred - see status code and problem object for more
information.
 content:
 "application/problem+json":
 schema:
 $ref: 'https://sailpoint-oss.github.io/sailpoint-api-guidelines/problem-
1.0.1.yaml#/Problem'

API designers should also think about a troubleshooting board as part of the associated online API
documentation. It provides information and handling guidance on application-specific errors and is
referenced via links from the API specification. This can reduce service support tasks and
contribute to service client and provider performance.

52

MUST use a standard error response object
All error responses must use the standard error response DTO object defined at https://github.com/
sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/
ErrorResponseDto.yaml. This provides a consistent error response structure that can be easily
consumed by clients.

MAY define application specific codes for the standard
error response object
If using the detailCode within the https://github.com/sailpoint/cloud-api-client-common/blob/
master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml, then the service owner is free
to create their own logic for detail codes that will aid them in debugging issues with the service.

MUST use the most accurate response example for
each endpoint
Each endpoint must define a response example for every success and error response that can be
returned. These examples must accurately reflect what can be returned by the endpoint. Default
examples shared across multiple endpoints may be used as long as they accurately reflect what can
be returned by the endpoint. If a default example doesn’t accurately reflect what can be returned
by an endpoint, then that endpoint must override the default example with one that is accurate.

MUST use standard HTTP status codes
You must only use standardized HTTP status codes consistently with their intended semantics. You
must not invent new HTTP status codes.

RFC standards define ~60 different HTTP status codes with specific semantics (mainly RFC7231 and
RFC 6585) — and there are upcoming new ones, e.g. draft legally-restricted-status. See overview on
all error codes on Wikipedia or via https://httpstatuses.com/) also inculding 'unofficial codes', e.g.
used by popular web servers like Nginx.

Below we list the most commonly used and best understood HTTP status codes, consistent with
their semantic in the RFCs. APIs should only use these to prevent misconceptions that arise from
less commonly used HTTP status codes.

Important: As long as your HTTP status code usage is well covered by the semantic defined here,
you should not describe it to avoid an overload with common sense information and the risk of
inconsistent definitions. Only if the HTTP status code is not in the list below or its usage requires
additional information aside the well defined semantic, the API specification must provide a clear
description of the HTTP status code in the response.

Success codes

53

https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml
https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml
https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml
https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml
https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml
https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/draft-tbray-http-legally-restricted-status-05
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://httpstatuses.com/

Code Meaning Methods

200 OK - this is the standard success response <all>

201 Created - Returned on successful entity creation. You are free to
return either an empty response or the created resource in
conjunction with the Location header. Always set the Location
header.

POST, PUT

202 Accepted - The request was successful and will be processed
asynchronously.

POST, PUT, PATCH,
DELETE

204 No content - There is no response body. PUT, PATCH, DELETE

207 Multi-Status - The response body contains multiple status
informations for different parts of a batch/bulk request (see MUST
use code 207 for batch or bulk requests).

POST, (DELETE)

Redirection codes

Code Meaning Methods

301 Moved Permanently - This and all future requests should be directed
to the given URI.

<all>

303 See Other - The response to the request can be found under another
URI using a GET method.

POST, PUT, PATCH,
DELETE

304 Not Modified - indicates that a conditional GET or HEAD request
would have resulted in 200 response if it were not for the fact that
the condition evaluated to false, i.e. resource has not been modified
since the date or version passed via request headers If-Modified-
Since or If-None-Match.

GET, HEAD

Client side error codes

Code Meaning Methods

400 Bad request - generic / unknown error. Should also be delivered in
case of input payload fails business logic validation.

<all>

401 Unauthorized - the users must log in (this often means
"Unauthenticated").

<all>

403 Forbidden - the user is not authorized to use this resource. <all>

404 Not found - the resource is not found. <all>

405 Method Not Allowed - the method is not supported, see OPTIONS. <all>

406 Not Acceptable - resource can only generate content not acceptable
according to the Accept headers sent in the request.

<all>

408 Request timeout - the server times out waiting for the resource. <all>

54

#status-code-200
#status-code-201
#post
#put
#status-code-202
#post
#put
#patch
#delete
#status-code-204
#put
#patch
#delete
#status-code-207
#post
#delete
#status-code-301
#status-code-303
#get
#post
#put
#patch
#delete
#status-code-304
#get
#head
#status-code-400
#status-code-401
#status-code-403
#status-code-404
#status-code-405
#options
#status-code-406
#status-code-408

Code Meaning Methods

409 Conflict - request cannot be completed due to conflict, e.g. when two
clients try to create the same resource or if there are concurrent,
conflicting updates.

POST, PUT, PATCH,
DELETE

410 Gone - resource does not exist any longer, e.g. when accessing a
resource that has intentionally been deleted.

<all>

412 Precondition Failed - returned for conditional requests, e.g. If-Match
if the condition failed. Used for optimistic locking.

PUT, PATCH, DELETE

415 Unsupported Media Type - e.g. clients sends request body without
content type.

POST, PUT, PATCH,
DELETE

423 Locked - Pessimistic locking, e.g. processing states. PUT, PATCH, DELETE

428 Precondition Required - server requires the request to be
conditional, e.g. to make sure that the "lost update problem" is
avoided (see MAY consider to support Prefer header to handle
processing preferences).

<all>

429 Too many requests - the client does not consider rate limiting and
sent too many requests (see MUST use code 429 with headers for
rate limits).

<all>

Server side error codes:

Code Meaning Methods

500 Internal Server Error - a generic error indication for an unexpected
server execution problem (here, client retry may be sensible)

<all>

501 Not Implemented - server cannot fulfill the request (usually implies
future availability, e.g. new feature).

<all>

503 Service Unavailable - service is (temporarily) not available (e.g. if a
required component or downstream service is not
available) — client retry may be sensible. If possible, the service
should indicate how long the client should wait by setting the Retry-
After header.

<all>

MUST use most specific HTTP status codes
You must use the most specific HTTP status code when returning information about your request
processing status or error situations. See the below table for examples of when to use the generic
400 vs a more specific 4xx

See https://github.com/sailpoint/cloud-api-client-common/blob/master/design-docs/v3/
definition.md#response-codes-and-headers for a list of response codes that SailPoint prefers to use.

If you encounter a scenario where two or more response codes are appropriate, prefer to use the
response code that preserves the security of the system and does not hand out too much

55

#status-code-409
#post
#put
#patch
#delete
#status-code-410
#status-code-412
https://tools.ietf.org/html/rfc7232#section-3.1
#put
#patch
#delete
#status-code-415
#post
#put
#patch
#delete
#status-code-423
#put
#patch
#delete
#status-code-428
#status-code-429
#status-code-500
#status-code-501
#status-code-503
https://tools.ietf.org/html/rfc7231#section-7.1.3
https://tools.ietf.org/html/rfc7231#section-7.1.3
https://github.com/sailpoint/cloud-api-client-common/blob/master/design-docs/v3/definition.md#response-codes-and-headers
https://github.com/sailpoint/cloud-api-client-common/blob/master/design-docs/v3/definition.md#response-codes-and-headers

information to unauthorized users.

MUST use code 207 for batch or bulk requests
Some APIs are required to provide either batch or bulk requests using POST for performance
reasons, i.e. for communication and processing efficiency. In this case services may be in need to
signal multiple response codes for each part of an batch or bulk request. As HTTP does not provide
proper guidance for handling batch/bulk requests and responses, we herewith define the following
approach:

• A batch or bulk request always responds with HTTP status code 207 unless a non-item-specific
failure occurs.

• A batch or bulk request may return 4xx/5xx status codes, if the failure is non-item-specific and
cannot be restricted to individual items of the batch or bulk request, e.g. in case of overload
situations or general service failures.

• A batch or bulk response with status code 207 always returns as payload a multi-status
response containing item specific status and/or monitoring information for each part of the
batch or bulk request.

Note: These rules apply even in the case that processing of all individual parts fail or each part is
executed asynchronously!

The rules are intended to allow clients to act on batch and bulk responses in a consistent way by
inspecting the individual results. We explicitly reject the option to apply 200 for a completely
successful batch as proposed in Nakadi’s POST /event-types/{name}/events as short cut without
inspecting the result, as we want to avoid risks and expect clients to handle partial batch failures
anyway.

The bulk or batch response may look as follows:

BatchOrBulkResponse:
 description: batch response object.
 type: object
 properties:
 items:
 type: array
 items:
 type: object
 properties:
 id:
 description: Identifier of batch or bulk request item.
 type: string
 status:
 description: >
 Response status value. A number or extensible enum describing
 the execution status of the batch or bulk request items.
 type: string
 x-extensible-enum: [...]

56

#post
#status-code-207
#client-side-error-codes
#server-side-error-codes
#status-code-207
#status-code-200
https://nakadi.io/manual.html#/event-types/name/events_post

 description:
 description: >
 Human readable status description and containing additional
 context information about failures etc.
 type: string
 required: [id, status]

Note: while a batch defines a collection of requests triggering independent processes, a bulk defines
a collection of independent resources created or updated together in one request. With respect to
response processing this distinction normally does not matter.

MUST use code 429 with headers for rate limits
APIs that wish to manage the request rate of clients must use the 429 (Too Many Requests) response
code, if the client exceeded the request rate (see RFC 6585). Such responses must also contain
header information providing further details to the client. There are two approaches a service can
take for header information:

• Return a Retry-After header indicating how long the client ought to wait before making a
follow-up request. The Retry-After header can contain a HTTP date value to retry after or the
number of seconds to delay. Either is acceptable but APIs should prefer to use a delay in
seconds.

• Return a trio of X-RateLimit headers. These headers (described below) allow a server to express
a service level in the form of a number of allowing requests within a given window of time and
when the window is reset.

The X-RateLimit headers are:

• X-RateLimit-Limit: The maximum number of requests that the client is allowed to make in this
window.

• X-RateLimit-Remaining: The number of requests allowed in the current window.

• X-RateLimit-Reset: The relative time in seconds when the rate limit window will be reset.
Beware that this is different to Github and Twitter’s usage of a header with the same name
which is using UTC epoch seconds instead.

The reason to allow both approaches is that APIs can have different needs. Retry-After is often
sufficient for general load handling and request throttling scenarios and notably, does not strictly
require the concept of a calling entity such as a tenant or named account. In turn this allows
resource owners to minimise the amount of state they have to carry with respect to client requests.
The 'X-RateLimit' headers are suitable for scenarios where clients are associated with pre-existing
account or tenancy structures. 'X-RateLimit' headers are generally returned on every request and
not just on a 429, which implies the service implementing the API is carrying sufficient state to
track the number of requests made within a given window for each named entity.

MUST support problem JSON
TBD

57

#status-code-429
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc7231#section-7.1.3

MUST not expose stack traces
Stack traces contain implementation details that are not part of an API, and on which clients should
never rely. Moreover, stack traces can leak sensitive information that partners and third parties are
not allowed to receive and may disclose insights about vulnerabilities to attackers.

15. Performance

SHOULD support partial responses via filtering
Depending on your use case and payload size, you can significantly reduce network bandwidth
need by supporting filtering of returned entity fields. Here, the client can explicitly determine the
subset of fields he wants to receive via the fields query parameter. (It is analogue to GraphQL
fields and simple queries, and also applied, for instance, for Google Cloud API’s partial responses.)

Unfiltered

GET http://api.example.org/users/123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "cddd5e44-dae0-11e5-8c01-63ed66ab2da5",
 "name": "John Doe",
 "address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
 "birthday": "1984-09-13",
 "friends": [{
 "id": "1fb43648-dae1-11e5-aa01-1fbc3abb1cd0",
 "name": "Jane Doe",
 "address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
 "birthday": "1988-04-07"
 }]
}

Filtered

GET http://api.example.org/users/123?fields=(name,friends(name)) HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
 "name": "John Doe",
 "friends": [{
 "name": "Jane Doe"

58

#fields
https://graphql.org/learn/queries/#fields
https://graphql.org/learn/queries/#fields
https://cloud.google.com/storage/docs/json_api/v1/how-tos/performance#partial-response

 }]
}

The fields query parameter determines the fields returned with the response payload object. For
instance, (name) returns users root object with only the name field, and (name,friends(name)) returns
the name and the nested friends object with only its name field.

OpenAPI doesn’t support you in formally specifying different return object schemes depending on a
parameter. When you define the field parameter, we recommend to provide the following
description: Endpoint supports filtering of return object fields as described in [Rule
#157](https://opensource.zalando.com/restful-api-guidelines/#157)

The syntax of the query fields value is defined by the following BNF grammar.

<fields> ::= [<negation>] <fields_struct>
<fields_struct> ::= "(" <field_items> ")"
<field_items> ::= <field> ["," <field_items>]
<field> ::= <field_name> | <fields_substruct>
<fields_substruct> ::= <field_name> <fields_struct>
<field_name> ::= <dash_letter_digit> [<field_name>]
<dash_letter_digit> ::= <dash> | <letter> | <digit>
<dash> ::= "-" | "_"
<letter> ::= "A" | ... | "Z" | "a" | ... | "z"
<digit> ::= "0" | ... | "9"
<negation> ::= "!"

Note: Following the principle of least astonishment, you should not define the fields query
parameter using a default value, as the result is counter-intuitive and very likely not anticipated by
the consumer.

SHOULD allow optional embedding of sub-resources
Embedding related resources (also know as Resource expansion) is a great way to reduce the
number of requests. In cases where clients know upfront that they need some related resources
they can instruct the server to prefetch that data eagerly. Whether this is optimized on the server,
e.g. a database join, or done in a generic way, e.g. an HTTP proxy that transparently embeds
resources, is up to the implementation.

See MUST stick to conventional query parameters for naming, e.g. "embed" for steering of
embedded resource expansion. Please use the BNF grammar, as already defined above for filtering,
when it comes to an embedding query syntax.

Embedding a sub-resource can possibly look like this where an order resource has its order items
as sub-resource (/order/{orderId}/items):

GET /order/123?embed=(items) HTTP/1.1

{

59

#fields
https://opensource.zalando.com/restful-api-guidelines/#157
#fields
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
#fields
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

 "id": "123",
 "_embedded": {
 "items": [
 {
 "position": 1,
 "sku": "1234-ABCD-7890",
 "price": {
 "amount": 71.99,
 "currency": "EUR"
 }
 }
]
 }
}

16. Pagination

MUST support pagination
Access to lists of data items must support pagination to protect the service against overload as well
as for best client side iteration and batch processing experience. This holds true for all lists that are
(potentially) larger than just a few hundred entries.

There are two well known page iteration techniques:

• Offset/Limit-based pagination: numeric offset identifies the first page entry

• Cursor/Limit-based — aka key-based — pagination: a unique key element identifies the first
page entry (see also Facebook’s guide)

The technical conception of pagination should also consider user experience related issues. As
mentioned in this article, jumping to a specific page is far less used than navigation via next/prev
page links.

We currently prefer to use Offset/Limit-based pagination.

Note: To provide a consistent look and feel of pagination patterns, you must stick to the common
query parameter names defined in MUST stick to conventional query parameters.

MAY use pagination links where applicable
To simplify client design, APIs should support simplified hypertext controls for paginating over
collections whenever applicable as follows

{
 "self": "https://myorg.api.identitynow.com/v3/resources?cursor=<self-position>",
 "first": "https://myorg.api.identitynow.com/v3/resources?cursor=<first-position>",
 "prev": "https://myorg.api.identitynow.com/v3/resources?cursor=<previous-position>",

60

https://developer.sailpoint.com/idn/api/standard-collection-parameters#paginating-results
https://dev.twitter.com/overview/api/cursoring
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.4#paging
https://www.smashingmagazine.com/2016/03/pagination-infinite-scrolling-load-more-buttons/
#next
#prev
https://developer.sailpoint.com/idn/api/standard-collection-parameters#paginating-results

 "next": "https://myorg.api.identitynow.com/v3/resources?cursor=<next-position>",
 "last": "https://myorg.api.identitynow.com/v3/resources?cursor=<last-position>",
 "query": {
 "query-param-<1>": ...,
 "query-param-<n>": ...
 },
 "items": [...]
}

Remarks:

• It is essential to include the query parameters from the original requests in the hypertext
controls provided for pagination. These parameters can either be encoded within the cursor or
provided separately.

• You should avoid providing a total count unless there is a clear need to do so. Very often, there
are significant system and performance implications when supporting full counts. Especially, if
the data set grows and requests become complex queries and filters drive full scans. While this
is an implementation detail relative to the API, it is important to consider the ability to support
serving counts over the life of a service.

• The hypertext controls such as self, first, prev, next and last are all optional. You should include
the relevant controls based on the specific requirements.

17. Hypermedia

MUST use REST maturity level 2
We strive for a good implementation of REST Maturity Level 2 as it enables us to build resource-
oriented APIs that make full use of HTTP verbs and status codes. You can see this expressed by
many rules throughout these guidelines, e.g.:

• SHOULD avoid actions — think about resources

• SHOULD keep URLs verb-free

• MUST use HTTP methods correctly

• MUST use standard HTTP status codes

Although this is not HATEOAS, it should not prevent you from designing proper link relationships
in your APIs as stated in rules below.

SHOULD use full, absolute URI
Links to other resource should always use full, absolute URI.

Motivation: Exposing any form of relative URI (no matter if the relative URI uses an absolute or
relative path) introduces avoidable client side complexity. It also requires clarity on the base URI,
which might not be given when using features like embedding subresources. The primary

61

http://martinfowler.com/articles/richardsonMaturityModel.html#level2

advantage of non-absolute URI is reduction of the payload size, which is better achievable by
following the recommendation to use gzip compression.

MUST use common hypertext controls
When embedding links to other resources into representations you must use the common hypertext
control object. It contains at least one attribute:

• href: The URI of the resource the hypertext control is linking to. All our API are using HTTP(s) as
URI scheme.

In API that contain any hypertext controls, the attribute name href is reserved for usage within
hypertext controls.

The schema for hypertext controls can be derived from this model:

HttpLink:
 description: A base type of objects representing links to resources.
 type: object
 properties:
 href:
 description: Any URI that is using http or https protocol
 type: string
 format: uri
 required:
 - href

The name of an attribute holding such a HttpLink object specifies the relation between the object
that contains the link and the linked resource. Implementations should use names from the IANA
Link Relation Registry whenever appropriate. As IANA link relation names use hyphen-case
notation, while this guide enforces snake_case notation for attribute names, hyphens in IANA
names have to be replaced with underscores (e.g. the IANA link relation type version-history would
become the attribute version_history)

Specific link objects may extend the basic link type with additional attributes, to give additional
information related to the linked resource or the relationship between the source resource and the
linked one.

E.g. a service providing "Person" resources could model a person who is married with some other
person with a hypertext control that contains attributes which describe the other person (id, name)
but also the relationship "spouse" between the two persons (since):

{
 "id": "446f9876-e89b-12d3-a456-426655440000",
 "name": "Peter Mustermann",
 "spouse": {
 "href": "https://...",
 "since": "1996-12-19",

62

#href
#href
http://www.iana.org/assignments/link-relations
http://www.iana.org/assignments/link-relations

 "id": "123e4567-e89b-12d3-a456-426655440000",
 "name": "Linda Mustermann"
 }
}

Hypertext controls are allowed anywhere within a JSON model. While this specification would
allow HAL, we actually don’t recommend/enforce the usage of HAL anymore as the structural
separation of meta-data and data creates more harm than value to the understandability and
usability of an API.

MUST not use link headers with JSON entities
For flexibility and precision, we prefer links to be directly embedded in the JSON payload instead of
being attached using the uncommon link header syntax. As a result, the use of the Link Header
defined by RFC 8288 in conjunction with JSON media types is forbidden.

18. Standard headers
This section describes a handful of standard headers, which we found raising the most questions in
our daily usage, or which are useful in particular circumstances but not widely known.

MAY use standardized headers
Use this list and explicitly mention its support in your OpenAPI definition.

SHOULD use uppercase separate words with hyphens
for HTTP headers
This convention is followed by most standard headers e.g. as defined in RFC 2616 and RFC 4229.
Examples:

If-Modified-Since
Accept-Encoding
Content-ID
Language

Note, HTTP standard defines headers as case-insensitive (RFC 7230, p.22). However, for sake of
readability and consistency you should follow the convention when using standard or proprietary
headers. Exceptions are common abbreviations like ID.

MUST use Content-* headers correctly
Content or entity headers are headers with a Content- prefix. They describe the content of the body
of the message and they can be used in both, HTTP requests and responses. Commonly used content

63

http://stateless.co/hal_specification.html
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://datatracker.ietf.org/doc/html/rfc2616#section-4.2
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc4229
https://tools.ietf.org/html/rfc7230#page-22

headers include but are not limited to:

• Content-Disposition can indicate that the representation is supposed to be saved as a file, and
the proposed file name.

• Content-Encoding indicates compression or encryption algorithms applied to the content.

• Content-Length indicates the length of the content (in bytes).

• Content-Language indicates that the body is meant for people literate in some human
language(s).

• Content-Location indicates where the body can be found otherwise (MAY use Content-Location
header for more details]).

• Content-Range is used in responses to range requests to indicate which part of the requested
resource representation is delivered with the body.

• Content-Type indicates the media type of the body content.

SHOULD use Location header instead of Content-
Location header
As the correct usage of Content-Location response header (see below) with respect to caching and
its method specific semantics is difficult, we discourage the use of Content-Location. In most cases it
is sufficient to inform clients about the resource location in create or re-direct responses by using
the Location header while avoiding the Content-Location specific ambiguities and complexities.

More details in RFC 7231 7.1.2 Location, 3.1.4.2 Content-Location

MAY use Content-Location header
The Content-Location header is optional and can be used in successful write operations (PUT, POST, or
PATCH) or read operations (GET, HEAD) to guide caching and signal a receiver the actual location of the
resource transmitted in the response body. This allows clients to identify the resource and to update
their local copy when receiving a response with this header.

The Content-Location header can be used to support the following use cases:

• For reading operations GET and HEAD, a different location than the requested URI can be used to
indicate that the returned resource is subject to content negotiations, and that the value
provides a more specific identifier of the resource.

• For writing operations PUT and PATCH, an identical location to the requested URI can be used to
explicitly indicate that the returned resource is the current representation of the newly created
or updated resource.

• For writing operations POST and DELETE, a content location can be used to indicate that the body
contains a status report resource in response to the requested action, which is available at
provided location.

Note: When using the Content-Location header, the Content-Type header has to be set as well. For
example:

64

https://tools.ietf.org/html/rfc6266#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7233#section-4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
#put
#post
#patch
#get
#head
#get
#head
#put
#patch
#post
#delete
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

GET /products/123/images HTTP/1.1

HTTP/1.1 200 OK
Content-Type: image/png
Content-Location: /products/123/images?format=raw

MAY consider to support Prefer header to handle
processing preferences
The Prefer header defined in RFC 7240 allows clients to request processing behaviors from servers.
It pre-defines a number of preferences and is extensible, to allow others to be defined. Support for
the Prefer header is entirely optional and at the discretion of API designers, but as an existing
Internet Standard, is recommended over defining proprietary "X-" headers for processing
directives.

The Prefer header can defined like this in an API definition:

components:
 headers:
 - Prefer:
 description: >
 The RFC7240 Prefer header indicates that a particular server behavior
 is preferred by the client but is not required for successful completion
 of the request (see [RFC 7240](https://tools.ietf.org/html/rfc7240).
 The following behaviors are supported by this API:

 # (indicate the preferences supported by the API or API endpoint)
 * **respond-async** is used to suggest the server to respond as fast as
 possible asynchronously using 202 - accepted - instead of waiting for
 the result.
 * **return=<minimal|representation>** is used to suggest the server to
 return using 204 without resource (minimal) or using 200 or 201 with
 resource (representation) in the response body on success.
 * **wait=<delta-seconds>** is used to suggest a maximum time the server
 has time to process the request synchronously.
 * **handling=<strict|lenient>** is used to suggest the server to be
 strict and report error conditions or lenient, i.e. robust and try to
 continue, if possible.

 type: array
 items:
 type: string
 required: false

Note: Please copy only the behaviors into your Prefer header specification that are supported by
your API endpoint. If necessary, specify different Prefer headers for each supported use case.

65

https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240

Supporting APIs may return the Preference-Applied header also defined in RFC 7240 to indicate
whether a preference has been applied.

MAY consider to support ETag together with If-Match
/If-None-Match header
When creating or updating resources it may be necessary to expose conflicts and to prevent the
'lost update' or 'initially created' problem. Following RFC 7232 "HTTP: Conditional Requests" this
can be best accomplished by supporting the ETag header together with the If-Match or If-None-Match
conditional header. The contents of an ETag: <entity-tag> header is either (a) a hash of the
response body, (b) a hash of the last modified field of the entity, or (c) a version number or
identifier of the entity version.

To expose conflicts between concurrent update operations via PUT, POST, or PATCH, the If-Match:
<entity-tag> header can be used to force the server to check whether the version of the updated
entity is conforming to the requested <entity-tag>. If no matching entity is found, the operation is
supposed a to respond with status code 412 - precondition failed.

Beside other use cases, If-None-Match: * can be used in a similar way to expose conflicts in resource
creation. If any matching entity is found, the operation is supposed a to respond with status code
412 - precondition failed.

The ETag, If-Match, and If-None-Match headers can be defined as follows in the API definition:

components:
 headers:
 - ETag:
 description: |
 The RFC 7232 ETag header field in a response provides the entity-tag of
 a selected resource. The entity-tag is an opaque identifier for versions
 and representations of the same resource over time, regardless whether
 multiple versions are valid at the same time. An entity-tag consists of
 an opaque quoted string, possibly prefixed by a weakness indicator (see
 [RFC 7232 Section 2.3](https://tools.ietf.org/html/rfc7232#section-2.3).

 type: string
 required: false
 example: W/"xy", "5", "5db68c06-1a68-11e9-8341-68f728c1ba70"

 - If-Match:
 description: |
 The RFC7232 If-Match header field in a request requires the server to
 only operate on the resource that matches at least one of the provided
 entity-tags. This allows clients express a precondition that prevent
 the method from being applied if there have been any changes to the
 resource (see [RFC 7232 Section
 3.1](https://tools.ietf.org/html/rfc7232#section-3.1).

 type: string

66

https://tools.ietf.org/html/rfc7240#section-3
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2
#put
#post
#patch
https://tools.ietf.org/html/rfc7232#section-2.3
#status-code-412
#status-code-412
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2

 required: false
 example: "5", "7da7a728-f910-11e6-942a-68f728c1ba70"

 - If-None-Match:
 description: |
 The RFC7232 If-None-Match header field in a request requires the server
 to only operate on the resource if it does not match any of the provided
 entity-tags. If the provided entity-tag is `*`, it is required that the
 resource does not exist at all (see [RFC 7232 Section
 3.2](https://tools.ietf.org/html/rfc7232#section-3.2).

 type: string
 required: false
 example: "7da7a728-f910-11e6-942a-68f728c1ba70", *

Please see Optimistic locking in RESTful APIs for a detailed discussion and options.

MAY consider to support Idempotency-Key header
When creating or updating resources it can be helpful or necessary to ensure a strong idempotent
behavior comprising same responses, to prevent duplicate execution in case of retries after timeout
and network outages. Generally, this can be achieved by sending a client specific unique request key
– that is not part of the resource – via Idempotency-Key header.

The unique request key is stored temporarily, e.g. for 24 hours, together with the response and the
request hash (optionally) of the first request in a key cache, regardless of whether it succeeded or
failed. The service can now look up the unique request key in the key cache and serve the response
from the key cache, instead of re-executing the request, to ensure idempotent behavior. Optionally,
it can check the request hash for consistency before serving the response. If the key is not in the key
store, the request is executed as usual and the response is stored in the key cache.

This allows clients to safely retry requests after timeouts, network outages, etc. while receive the
same response multiple times. Note: The request retry in this context requires to send the exact
same request, i.e. updates of the request that would change the result are off-limits. The request
hash in the key cache can protection against this misbehavior. The service is recommended to
reject such a request using status code 400.

Important: To grant a reliable idempotent execution semantic, the resource and the key cache
have to be updated with hard transaction semantics – considering all potential pitfalls of failures,
timeouts, and concurrent requests in a distributed systems. This makes a correct implementation
exceeding the local context very hard.

The Idempotency-Key header must be defined as follows, but you are free to choose your expiration
time:

components:
 headers:
 - Idempotency-Key:
 description: |

67

#230
#status-code-400
#230

 The idempotency key is a free identifier created by the client to
 identify a request. It is used by the service to identify subsequent
 retries of the same request and ensure idempotent behavior by sending
 the same response without executing the request a second time.

 Clients should be careful as any subsequent requests with the same key
 may return the same response without further check. Therefore, it is
 recommended to use an UUID version 4 (random) or any other random
 string with enough entropy to avoid collisions.

 Idempotency keys expire after 24 hours. Clients are responsible to stay
 within this limits, if they require idempotent behavior.

 type: string
 format: uuid
 required: false
 example: "7da7a728-f910-11e6-942a-68f728c1ba70"

Hint: The key cache is not intended as request log, and therefore should have a limited lifetime,
else it could easily exceed the data resource in size.

Note: The Idempotency-Key header unlike other headers in this section is not standardized in an
RFC. Our only reference are the usage in the Stripe API. However, as it fit not into our section about
proprietary-headers, and we did not want to change the header name and semantic, we decided to
treat it as any other common header.

19. API Operation

MUST publish OpenAPI specification
All service applications must publish OpenAPI specifications of their external APIs. While this is
optional for internal APIs, i.e. APIs marked with the component-internal API audience group, we
still recommend to do so to profit from the API management infrastructure.

IDN APIs are published from an internal GitHub repository. All other APIs will need to be submitted
to the Developer Relations team for publishing.

MUST monitor API usage
Owners of APIs used in production should monitor API service to get information about its using
clients. This information, for instance, is useful to identify potential review partner for API changes.

Hint: A preferred way of client detection implementation is by logging of the client-id retrieved
from the OAuth token.

68

#230
https://stripe.com/docs/api/idempotent_requests

Appendix A: References
This section collects links to documents to which we refer, and base our guidelines on.

OpenAPI specification
• OpenAPI specification

• OpenAPI specification mind map

Publications, specifications and standards
• RFC 3339: Date and Time on the Internet: Timestamps

• RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace

• RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON)

• RFC 8288: Web Linking

• RFC 6585: Additional HTTP Status Codes

• RFC 6902: JavaScript Object Notation (JSON) Patch

• RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format

• RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

• RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

• RFC 7232: Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests

• RFC 7233: Hypertext Transfer Protocol (HTTP/1.1): Range Requests

• RFC 7234: Hypertext Transfer Protocol (HTTP/1.1): Caching

• RFC 7240: Prefer Header for HTTP

• RFC 7396: JSON Merge Patch

• RFC 7807: Problem Details for HTTP APIs

• RFC 4648: The Base16, Base32, and Base64 Data Encodings

• ISO 8601: Date and time format

• ISO 3166-1 alpha-2: Two letter country codes

• ISO 639-1: Two letter language codes

• ISO 4217: Currency codes

• BCP 47: Tags for Identifying Languages

Dissertations
• Roy Thomas Fielding - Architectural Styles and the Design of Network-Based Software

Architectures: This is the text which defines what REST is.

69

https://github.com/OAI/OpenAPI-Specification/
https://openapi-map.apihandyman.io/
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc8288
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc4648
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_4217
https://tools.ietf.org/html/bcp47
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Books
• REST in Practice: Hypermedia and Systems Architecture

• Build APIs You Won’t Hate

• InfoQ eBook - Web APIs: From Start to Finish

Blogs
• Lessons-learned blog: Thoughts on RESTful API Design

Appendix B: Tooling
This is not a part of the actual guidelines, but might be helpful for following them. Using a tool
mentioned here doesn’t automatically ensure you follow the guidelines.

API first integrations
The following software was specifically designed to support the API First workflow with OpenAPI
YAML files (sorted alphabetically):

• API Linter: SailPoint’s API linter using Spectral

The Swagger/OpenAPI homepage lists more Community-Driven Language Integrations, but most of
them do not fit our API First approach.

Appendix C: Best practices
The best practices presented in this section are not part of the actual guidelines, but should provide
guidance for common challenges we face when implementing RESTful APIs.

Cursor-based pagination in RESTful APIs
Cursor-based pagination is a very powerful and valuable technique, that allows to efficiently
provide a stable view on changing data. This is obtained by using an anchor element that allows to
retrieve all page elements directly via an ordering combined-index, usually based on created_at or
modified_at. Simple said, the cursor is the information set needed to reconstruct the database query
to retrieves the minimal page information from the data storage.

The cursor itself is an opaque string, transmitted forth and back between service and clients, that
must never be inspected or constructed by clients. Therefore, it is good practice to encode
(encrypt) its content in a non-human-readable form.

The cursor content usually consists of a pointer to the anchor element defining the page position in
the collection, a flag whether the element is included or excluded into/from the page, the retrieval
direction, and a hash over the applied query filters (or the query filter itself) to safely re-create the

70

http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.infoq.com/minibooks/emag-web-api
http://restful-api-design.readthedocs.org/en/latest/
https://github.com/sailpoint-oss/api-linter
http://swagger.io/open-source-integrations/
#cursor
#cursor

collection. It is important to note, that a cursor should be always defined in relation to the current
page to anticipate all occurring changes when progressing.

The cursor is usually defined as an encoding of the following information:

Cursor:
 descriptions: >
 Cursor structure that contains all necessary information to efficiently
 retrieve a page from the data store.
 type: object
 properties:
 position:
 description: >
 Object containing the keys pointing to the anchor element that is
 defining the collection resource page. Normally the position is given
 by the first or the last page element. The position object contains all
 values required to access the element efficiently via the ordered,
 combined index, e.g `modified_at`, `id`.
 type: object
 properties: ...

 element:
 description: >
 Flag whether the anchor element, which is pointed to by the `position`,
 should be *included* or *excluded* from the result set. Normally, only
 the current page includes the pointed to element, while all others are
 exclude it.
 type: string
 enum: [INCLUDED, EXCLUDED]

 direction:
 description: >
 Flag for the retrieval direction that is defining which elements to
 choose from the collection resource starting from the anchor elements
 position. It is either *ascending* or *descending* based on the
 ordering combined index.
 type: string
 enum: [ASCENDING, DESCENDING]

 query_hash:
 description: >
 Stable hash calculated over all query filters applied to create the
 collection resource that is represented by this cursor.
 type: string

 query:
 description: >
 Object containing all query filters applied to create the collection
 resource that is represented by this cursor.
 type: object

71

#cursor
#cursor

 properties: ...

 required:
 - position
 - element
 - direction

Note: In case of complex and long search requests, e.g. when GET with body is already required, the
cursor may not be able to include the query because of common HTTP parameter size restrictions.
In this case the query filters should be transported via body - in the request as well as in the
response, while the pagination consistency should be ensured via the query_hash.

Remark: It is also important to check the efficiency of the data-access. You need to make sure that
you have a fully ordered stable index, that allows to efficiently resolve all elements of a page. If
necessary, you need to provide a combined index that includes the id to ensure the full order and
additional filter criteria to ensure efficiency.

Further reading

• Twitter

• Use the Index, Luke

• Paging in PostgreSQL

Optimistic locking in RESTful APIs

Introduction

Optimistic locking might be used to avoid concurrent writes on the same entity, which might cause
data loss. A client always has to retrieve a copy of an entity first and specifically update this one. If
another version has been created in the meantime, the update should fail. In order to make this
work, the client has to provide some kind of version reference, which is checked by the service,
before the update is executed. Please read the more detailed description on how to update
resources via PUT in the HTTP Requests Section.

A RESTful API usually includes some kind of search endpoint, which will then return a list of result
entities. There are several ways to implement optimistic locking in combination with search
endpoints which, depending on the approach chosen, might lead to performing additional requests
to get the current version of the entity that should be updated.

ETag with If-Match header

An ETag can only be obtained by performing a GET request on the single entity resource before the
update, i.e. when using a search endpoint an additional request is necessary.

Example:

< GET /orders

72

#get-with-body
#cursor
https://dev.twitter.com/rest/public/timelines
http://use-the-index-luke.com/no-offset
https://www.citusdata.com/blog/1872-joe-nelson/409-five-ways-paginate-postgres-basic-exotic
#put
https://tools.ietf.org/html/rfc7232#section-2.3
#get

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042" },
> { "id": "O0000043" }
>]
> }

< GET /orders/BO0000042

> HTTP/1.1 200 OK
> ETag: osjnfkjbnkq3jlnksjnvkjlsbf
> { "id": "BO0000042", ... }

< PUT /orders/O0000042
< If-Match: osjnfkjbnkq3jlnksjnvkjlsbf
< { "id": "O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

> HTTP/1.1 412 Precondition failed

Pros

• RESTful solution

Cons

• Many additional requests are necessary to build a meaningful front-end

ETags in result entities

The ETag for every entity is returned as an additional property of that entity. In a response
containing multiple entities, every entity will then have a distinct ETag that can be used in
subsequent PUT requests.

In this solution, the etag property should be readonly and never be expected in the PUT request
payload.

Example:

< GET /orders

> HTTP/1.1 200 OK
> {
> "items": [

73

#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
#put
#put

> { "id": "O0000042", "etag": "osjnfkjbnkq3jlnksjnvkjlsbf", "foo": 42, "bar": true
},
> { "id": "O0000043", "etag": "kjshdfknjqlowjdsljdnfkjbkn", "foo": 24, "bar":
false }
>]
> }

< PUT /orders/O0000042
< If-Match: osjnfkjbnkq3jlnksjnvkjlsbf
< { "id": "O0000042", "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

> HTTP/1.1 412 Precondition failed

Pros

• Perfect optimistic locking

Cons

• Information that only belongs in the HTTP header is part of the business objects

Version numbers

The entities contain a property with a version number. When an update is performed, this version
number is given back to the service as part of the payload. The service performs a check on that
version number to make sure it was not incremented since the consumer got the resource and
performs the update, incrementing the version number.

Since this operation implies a modification of the resource by the service, a POST operation on the
exact resource (e.g. POST /orders/O0000042) should be used instead of a PUT.

In this solution, the version property is not readonly since it is provided at POST time as part of the
payload.

Example:

< GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042", "version": 1, "foo": 42, "bar": true },
> { "id": "O0000043", "version": 42, "foo": 24, "bar": false }
>]
> }

74

#get
https://tools.ietf.org/html/rfc7232#section-2.3
#post
#put
#post

< POST /orders/O0000042
< { "id": "O0000042", "version": 1, "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

or if there was an update since the GET and the version number in the database is higher than the
one given in the request body:

> HTTP/1.1 409 Conflict

Pros

• Perfect optimistic locking

Cons

• Functionality that belongs into the HTTP header becomes part of the business object

• Using POST instead of PUT for an update logic (not a problem in itself, but may feel unusual for
the consumer)

Last-Modified / If-Unmodified-Since

In HTTP 1.0 there was no ETag and the mechanism used for optimistic locking was based on a date.
This is still part of the HTTP protocol and can be used. Every response contains a Last-Modified
header with a HTTP date. When requesting an update using a PUT request, the client has to provide
this value via the header If-Unmodified-Since. The server rejects the request, if the last modified
date of the entity is after the given date in the header.

This effectively catches any situations where a change that happened between GET and PUT would be
overwritten. In the case of multiple result entities, the Last-Modified header will be set to the latest
date of all the entities. This ensures that any change to any of the entities that happens between GET
and PUT will be detectable, without locking the rest of the batch as well.

Example:

< GET /orders

> HTTP/1.1 200 OK
> Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
> {
> "items": [
> { "id": "O0000042", ... },
> { "id": "O0000043", ... }
>]
> }

< PUT /block/O0000042

75

#get
#post
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.2
#put
https://tools.ietf.org/html/rfc7232#section-3.4
#get
#put
https://tools.ietf.org/html/rfc7232#section-2.2
#get
#put

< If-Unmodified-Since: Wed, 22 Jul 2009 19:15:56 GMT
< { "id": "O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entities last modified is later than the given date:

> HTTP/1.1 412 Precondition failed

Pros

• Well established approach that has been working for a long time

• No interference with the business objects; the locking is done via HTTP headers only

• Very easy to implement

• No additional request needed when updating an entity of a search endpoint result

Cons

• If a client communicates with two different instances and their clocks are not perfectly in sync,
the locking could potentially fail

Conclusion

We suggest to either use the ETag in result entities or Last-Modified / If-Unmodified-Since approach.

Appendix D: Changelog
This change log only contains major changes made after October 2021.

Non-major changes are editorial-only changes or minor changes of existing guidelines, e.g. adding
new error code. Major changes are changes that come with additional obligations, or even change
an existing guideline obligation. The latter changes are additionally labeled with "Rule Change"
here.

To see a list of all changes, please have a look at the commit list in Github.

(Note that recent changes might be missing, as we update this list only occasionally, not with each
pull request, to avoid merge commits.)

Rule Changes
<!-- Adds rule id as a postfix to all rule titles -->
<script>
var ruleIdRegEx = /(\d)+/;
var h3headers = document.getElementsByTagName("h3");
for (var i = 0; i < h3headers.length; i++) {

76

#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7232#section-3.4
https://github.com/sailpoint-oss/sailpoint-api-guidelines/commits/main

 var header = h3headers[i];
 if (header.id && header.id.match(ruleIdRegEx)) {
 var a = header.getElementsByTagName("a")[0]
 a.innerHTML += " [" + header.id + "]";
 }
}
</script>

<!-- Add table of contents anchor and remove document title -->
<script>
var toc = document.getElementById('toc');
var div = document.createElement('div');
div.id = 'table-of-contents';
toc.parentNode.replaceChild(div, toc);
div.appendChild(toc);
var ul = toc.childNodes[3];
ul.removeChild(ul.childNodes[1]);
</script>

<!-- Adds sidebar navigation -->
<script>
var header = document.getElementById('header');
var nav = document.createElement('div');
nav.id = 'toc';
nav.classList.add('toc2');
var title = document.createElement('div');
title.id = 'toctitle';

var link = document.createElement('a');
link.innerText = 'API Guidelines';
link.href = '#';

title.append(link);
nav.append(title);

var ul = document.createElement('ul');
ul.classList.add('sectlevel1');

var link = document.createElement('a');
link.innerHTML = 'Table of Contents';
link.href = '#table-of-contents';
li = document.createElement('li');
li.append(link);
ul.append(li);

var link, li;
var h2headers = document.getElementsByTagName('h2');
for (var i = 1; i < h2headers.length; i++) {
 var a = h2headers[i].getElementsByTagName("a")[0];
 if (a !== undefined) {
 link = document.createElement('a');

77

 link.innerHTML = a.innerHTML;
 link.href = a.hash;
 li = document.createElement('li');
 li.append(link);
 ul.append(li);
 }
}

document.body.classList.add('toc2');
document.body.classList.add('toc-left');
nav.append(ul);
header.prepend(nav);
</script>

[1] Per definition of R.Fielding REST APIs have to support HATEOAS (maturity level 3). Our guidelines do not strongly advocate for
full REST compliance, but limited hypermedia usage, e.g. for pagination (see Hypermedia). However, we still use the term "RESTful
API", due to the absence of an alternative established term and to keep it like the very majority of web service industry that also
use the term for their REST approximations — in fact, in today’s industry full HATEOAS compliant APIs are a very rare exception.

78

	Untitled
	SailPoint RESTful API Guidelines
	Table of Contents
	1. Introduction
	Conventions used in these guidelines
	SailPoint specific information

	2. Principles
	API design principles
	API as a product
	API first

	3. General guidelines
	MUST follow SailPoint API Guidelines
	SHOULD follow API first principle
	MUST provide API specification using OpenAPI
	MUST provide detailed API description
	SHOULD provide API user manual
	MUST describe every parameter and property
	MUST provide an example for every parameter and property
	SHOULD keep operation summaries at five or less words
	MUST provide a valid operationId in camelCase for each operation
	MUST provide a valid tag for each operation
	MUST write APIs using U.S. English

	4. Meta information
	MUST contain API meta information
	MUST use semantic versioning
	MUST provide API audience

	5. Security
	MUST secure endpoints with OAuth 2.0
	MUST define and assign permissions (scopes)
	MUST define user levels (capabilities) needed by an endpoint
	MUST Document necessary license add-on to use an API collection
	MUST follow naming convention for permissions (scopes)

	6. Compatibility
	MUST not break backward compatibility
	SHOULD prefer compatible extensions
	MUST prepare clients to accept compatible API extensions
	SHOULD design APIs conservatively
	MUST always return JSON objects as top-level data structures
	MUST treat OpenAPI specification as open for extension by default
	SHOULD avoid versioning
	MUST use URI versioning
	MUST follow versioned API requirements
	MUST follow beta API requirements

	7. Deprecation
	SHOULD Confer with clients on accepted deprecation time-span
	MUST reflect deprecation in API specifications
	MUST monitor usage of deprecated API scheduled for sunset
	SHOULD add Deprecation and Sunset header to responses
	SHOULD add monitoring for Deprecation and Sunset header
	MUST not start using deprecated APIs

	8. JSON guidelines
	SHOULD pluralize array names
	MUST property names must be ASCII camelCase
	MUST declare enum values using UPPER_SNAKE_CASE string
	SHOULD define maps using additionalProperties
	MUST not use null for boolean properties
	MUST define a default value for boolean properties
	SHOULD avoid using qualifying verbs
	SHOULD use positive semantics for boolean fields
	MUST use a field name that suggests the value type when referencing an object
	SHOULD name references to foreign objects as <objectName>Ref
	SHOULD avoid using nested objects
	MUST define a default for optional values
	MUST define the “required” attribute for request/response objects and parameters
	MUST use same semantics for null and absent properties
	MUST use the “nullable” attribute for properties that can be null
	MUST not use null for empty arrays
	SHOULD define dates properties compliant with RFC 3339
	SHOULD define time durations and intervals properties conform to ISO 8601

	9. Data formats
	MUST use JSON as payload data interchange format
	MAY pass non-JSON media types using data specific standard formats
	SHOULD use standard media types
	MUST use standardized property formats
	MUST use standard date and time formats
	MUST use standards for country, language and currency codes
	MUST define format for number and integer types
	MUST use proper description format for the filters query param
	MUST use proper description format for the sorters query param

	10. Common data types
	MUST use the common money object
	MUST use common field names and semantics

	11. API naming
	MUST/SHOULD use functional naming schema
	MUST use lowercase separate words with hyphens for path segments
	MUST camelCase for query parameters
	MUST pluralize resource names
	MUST not use /api as base path
	MUST use normalized paths without empty path segments and trailing slashes
	MUST stick to conventional query parameters
	MUST Customer org name must never appear in the path of public APIs

	12. Resources
	SHOULD avoid actions — think about resources
	SHOULD model complete business processes
	SHOULD define useful resources
	SHOULD keep URLs verb-free
	MUST use domain-specific resource names
	MUST use URL-friendly resource identifiers: [a-zA-Z0-9:._\-/]*
	MUST identify resources and sub-resources via path segments
	SHOULD consider using (non-)nested URLs
	MUST not use sequential, numerical IDs
	SHOULD limit number of resource types
	SHOULD limit number of sub-resource levels

	13. HTTP requests and responses
	MUST use HTTP methods correctly
	MUST fulfill common method properties
	SHOULD consider to design POST and PATCH idempotent
	MAY use secondary key for idempotent POST design
	MUST define collection format of header and query parameters
	SHOULD design simple query languages using query parameters
	MUST design complex query languages using JSON
	MUST document implicit filtering

	14. HTTP status codes and errors
	MUST specify success and error responses
	MUST use a standard error response object
	MAY define application specific codes for the standard error response object
	MUST use the most accurate response example for each endpoint
	MUST use standard HTTP status codes
	MUST use most specific HTTP status codes
	MUST use code 207 for batch or bulk requests
	MUST use code 429 with headers for rate limits
	MUST support problem JSON
	MUST not expose stack traces

	15. Performance
	SHOULD support partial responses via filtering
	SHOULD allow optional embedding of sub-resources

	16. Pagination
	MUST support pagination
	MAY use pagination links where applicable

	17. Hypermedia
	MUST use REST maturity level 2
	SHOULD use full, absolute URI
	MUST use common hypertext controls
	MUST not use link headers with JSON entities

	18. Standard headers
	MAY use standardized headers
	SHOULD use uppercase separate words with hyphens for HTTP headers
	MUST use Content-* headers correctly
	SHOULD use Location header instead of Content-Location header
	MAY use Content-Location header
	MAY consider to support Prefer header to handle processing preferences
	MAY consider to support ETag together with If-Match/If-None-Match header
	MAY consider to support Idempotency-Key header

	19. API Operation
	MUST publish OpenAPI specification
	MUST monitor API usage

	Appendix A: References
	OpenAPI specification
	Publications, specifications and standards
	Dissertations
	Books
	Blogs

	Appendix B: Tooling
	API first integrations

	Appendix C: Best practices
	Cursor-based pagination in RESTful APIs
	Optimistic locking in RESTful APIs

	Appendix D: Changelog
	Rule Changes

