

Table of Contents

	SailPoint RESTful API Guidelines

	SailPoint RESTful API Guidelines

	1. Introduction

	Conventions used in these guidelines

	SailPoint specific information

	2. Principles

	API design principles

	API as a product

	API first

	3. General guidelines

	MUST follow SailPoint API Guidelines

	SHOULD follow API first principle

	MUST provide API specification using OpenAPI

	MUST provide detailed API description

	SHOULD provide API user manual

	MUST describe every parameter and property

	MUST provide an example for every parameter and property

	SHOULD keep operation summaries at five or less words

	MUST provide a valid operationId in camelCase for each operation

	MUST provide a valid tag for each operation

	MUST write APIs using U.S. English

	4. Meta information

	MUST contain API meta information

	MUST use semantic versioning

	MUST provide API audience

	5. Security

	MUST secure endpoints with OAuth 2.0

	MUST define and assign permissions (scopes)

	MUST define user levels (capabilities) needed by an endpoint

	MUST Document necessary license add-on to use an API collection

	MUST follow naming convention for permissions (scopes)

	6. Compatibility

	MUST not break backward compatibility

	SHOULD prefer compatible extensions

	MUST prepare clients to accept compatible API extensions

	SHOULD design APIs conservatively

	MUST always return JSON objects as top-level data structures

	MUST treat OpenAPI specification as open for extension by default

	SHOULD avoid versioning

	MUST use URI versioning

	MUST follow versioned API requirements

	MUST follow beta API requirements

	7. Deprecation

	SHOULD Confer with clients on accepted deprecation time-span

	MUST reflect deprecation in API specifications

	MUST monitor usage of deprecated API scheduled for sunset

	SHOULD add Deprecation and Sunset header to responses

	SHOULD add monitoring for Deprecation and Sunset header

	MUST not start using deprecated APIs

	8. JSON guidelines

	SHOULD pluralize array names

	MUST property names must be ASCII camelCase

	MUST declare enum values using UPPER_SNAKE_CASE string

	SHOULD define maps using additionalProperties

	MUST not use null for boolean properties

	MUST define a default value for boolean properties

	SHOULD avoid using qualifying verbs

	SHOULD use positive semantics for boolean fields

	MUST use a field name that suggests the value type when referencing an object

	SHOULD name references to foreign objects as <objectName>Ref

	SHOULD avoid using nested objects

	MUST define a default for optional values

	MUST define the “required” attribute for request/response objects and parameters

	MUST use same semantics for null and absent properties

	MUST use the “nullable” attribute for properties that can be null

	MUST not use null for empty arrays

	SHOULD define dates properties compliant with RFC 3339

	SHOULD define time durations and intervals properties conform to ISO 8601

	9. Data formats

	MUST use JSON as payload data interchange format

	MAY pass non-JSON media types using data specific standard formats

	SHOULD use standard media types

	MUST use standardized property formats

	MUST use standard date and time formats

	MUST use standards for country, language and currency codes

	MUST define format for number and integer types

	MUST use proper description format for the filters query param

	MUST use proper description format for the sorters query param

	10. Common data types

	MUST use the common money object

	MUST use common field names and semantics

	11. API naming

	MUST/SHOULD use functional naming schema

	MUST use lowercase separate words with hyphens for path segments

	MUST camelCase for query parameters

	MUST pluralize resource names

	MUST not use /api as base path

	MUST use normalized paths without empty path segments and trailing slashes

	MUST stick to conventional query parameters

	MUST Customer org name must never appear in the path of public APIs

	12. Resources

	SHOULD avoid actions — think about resources

	SHOULD model complete business processes

	SHOULD define useful resources

	SHOULD keep URLs verb-free

	MUST use domain-specific resource names

	MUST use URL-friendly resource identifiers: [a-zA-Z0-9:._\-/]*

	MUST identify resources and sub-resources via path segments

	SHOULD consider using (non-)nested URLs

	MUST not use sequential, numerical IDs

	SHOULD limit number of resource types

	SHOULD limit number of sub-resource levels

	13. HTTP requests and responses

	MUST use HTTP methods correctly

	MUST fulfill common method properties

	SHOULD consider to design POST and PATCH idempotent

	MAY use secondary key for idempotent POST design

	MUST define collection format of header and query parameters

	SHOULD design simple query languages using query parameters

	MUST design complex query languages using JSON

	MUST document implicit filtering

	14. HTTP status codes and errors

	MUST specify success and error responses

	MUST use a standard error response object

	MAY define application specific codes for the standard error response object

	MUST use the most accurate response example for each endpoint

	MUST use standard HTTP status codes

	MUST use most specific HTTP status codes

	MUST use code 207 for batch or bulk requests

	MUST use code 429 with headers for rate limits

	MUST support problem JSON

	MUST not expose stack traces

	15. Performance

	SHOULD support partial responses via filtering

	SHOULD allow optional embedding of sub-resources

	16. Pagination

	MUST support pagination

	MAY use pagination links where applicable

	17. Hypermedia

	MUST use REST maturity level 2

	SHOULD use full, absolute URI

	MUST use common hypertext controls

	MUST not use link headers with JSON entities

	18. Standard headers

	MAY use standardized headers

	SHOULD use uppercase separate words with hyphens for HTTP headers

	MUST use Content-* headers correctly

	SHOULD use Location header instead of Content-Location header

	MAY use Content-Location header

	MAY consider to support Prefer header to handle processing preferences

	MAY consider to support ETag together with If-Match/If-None-Match header

	MAY consider to support Idempotency-Key header

	19. API Operation

	MUST publish OpenAPI specification

	MUST monitor API usage

	Appendix A: References

	OpenAPI specification

	Publications, specifications and standards

	Dissertations

	Books

	Blogs

	Appendix B: Tooling

	API first integrations

	Appendix C: Best practices

	Cursor-based pagination in RESTful APIs

	Optimistic locking in RESTful APIs

	Appendix D: Changelog

	Rule Changes

SailPoint RESTful API Guidelines

SailPoint RESTful API Guidelines

 Github Repository

[image: API Guild Logo]

Other formats: PDF, EPUB3

1. Introduction

 SailPoint’s SaaS software architecture centers around microservices
that provide functionality via RESTful APIs with a JSON payload. Small
engineering teams own, deploy and operate these microservices. Our APIs most purely express what our systems do,
and are therefore highly valuable business assets. Designing
high-quality, long-lasting APIs has become even more critical for us
as we invest more in our SaaS platform and enabling customers and partners to build
functionalty outside of our UI.

With this in mind, we’ve adopted "API First" as one of our key
engineering principles. Microservices development begins with API
definition outside the code and ideally involves ample peer-review
feedback to achieve high-quality APIs. API First encompasses a set of
quality-related standards and fosters a peer review culture including a
lightweight review procedure. We encourage our teams to follow them to
ensure that our APIs:

	
are easy to understand and learn

	
are general and abstracted from specific implementation and use cases

	
are robust and easy to use

	
have a common look and feel

	
follow a consistent RESTful style and syntax

	
are consistent with other teams’ APIs and our global architecture

Ideally, all SailPoint APIs will look like the same author created them.

Conventions used in these guidelines

 The requirement level keywords "MUST", "MUST NOT", "REQUIRED", "SHALL",
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" used in this document (case insensitive) are to be
interpreted as described in RFC
2119.

SailPoint specific information

 The purpose of our "RESTful API guidelines" is to define standards to
successfully establish "consistent API look and feel" quality. The
SailPoint API Guild drafted and owns this document. Teams are responsible to fulfill
these guidelines during API development and are encouraged to contribute
to guideline evolution via pull requests.

These guidelines will, to some extent, remain work in progress as our
work evolves, but teams can confidently follow and trust them.

In case guidelines are changing, following rules apply:

	
existing APIs don’t have to be changed, but we recommend it

	
clients of existing APIs have to cope with these APIs based on
outdated rules

	
new APIs have to respect the current guidelines

Furthermore you should keep in mind that once an API becomes public
externally available, it has to be re-reviewed and changed according to
current guidelines - for sake of overall consistency.

2. Principles

API design principles

 Comparing SOA web service interfacing style of SOAP vs. REST, the former
tend to be centered around operations that are usually use-case specific
and specialized. In contrast, REST is centered around business (data)
entities exposed as resources that are identified via URIs and can be
manipulated via standardized CRUD-like methods using different
representations, and hypermedia. RESTful APIs
tend to be less use-case specific and come with less rigid client /
server coupling and are more suitable for an ecosystem of (core) services
providing a platform of APIs to build diverse new business services.
We apply the RESTful web service principles to all kind of application
(micro-) service components, independently from whether they provide
functionality via the internet or intranet.

	
We prefer REST-based APIs with JSON payloads

	
We prefer systems to be truly RESTful
[1]

An important principle for API design and usage is Postel’s
Law, aka The
Robustness Principle (see also RFC 1122):

	
Be liberal in what you accept, be conservative in what you send

Readings: Some interesting reads on the RESTful API design style and service architecture:

	
Article:
REST API Design - Resource Modeling

	
Article:
Richardson Maturity Model — Steps toward the glory of REST

	
Book:
Irresistable
APIs: Designing web APIs that developers will love

	
Book:
REST
in Practice: Hypermedia and Systems Architecture

	
Book: Build APIs You
Won’t Hate

	
Fielding Dissertation:
Architectural
Styles and the Design of Network-Based Software Architectures

API as a product

 At SailPoint, we want to deliver products to our (internal and external)
customers which can be consumed like a service. Platform products provide their functionality via (public) APIs; hence,
the design of our APIs should be based on the API as a Product
principle:

	
Treat your API as product and act like a product owner

	
Put yourself into the place of your customers; be an advocate for
their needs

	
Emphasize simplicity, comprehensibility, and usability of APIs to
make them irresistible for client engineers

	
Actively improve and maintain API consistency over the long term

	
Make use of customer feedback and provide service level support

Embracing 'API as a Product' facilitates a service ecosystem, which can
be evolved more easily and used to experiment quickly with new business
ideas by recombining core capabilities.
It makes the difference between agile, innovative product service
business built on a platform of APIs and ordinary enterprise integration business
where APIs are provided as "appendix" of existing products to support system integration
and optimised for local server-side realization.

Understand the concrete use cases of your customers and carefully check
the trade-offs of your API design variants with a product mindset. Avoid short-term
implementation optimizations at the expense of unnecessary client side
obligations, and have a high attention on API quality and client
developer experience.

API as a Product is closely related to our API First principle
(see next chapter) which is more focused on how we engineer high quality APIs.

API first

 API First is one of our engineering
and architecture principles. In a nutshell API First requires two
aspects:

	
define APIs first, before coding its implementation, using a standard specification
language

	
get early review feedback from peers and client developers

By defining APIs outside the code, we want to facilitate early review
feedback and also a development discipline that focus service interface
design on…​

	
profound understanding of the domain and required functionality

	
generalized business entities / resources, i.e. avoidance of use case
specific APIs

	
clear separation of WHAT vs. HOW concerns, i.e. abstraction from
implementation aspects — APIs should be stable even if we replace
complete service implementation including its underlying technology
stack

Moreover, API definitions with standardized specification format also
facilitate…​

	
single source of truth for the API specification; it is a crucial part
of a contract between service provider and client users

	
infrastructure tooling for API discovery, API GUIs, API documents,
automated quality checks

Elements of API First are also this API Guidelines and a standardized
API review process as to get early review feedback from
peers and client developers. Peer review is important for us to get high
quality APIs, to enable architectural and design alignment and to
supported development of client applications decoupled from service
provider engineering life cycle.

It is important to learn, that API First is not in conflict with the
agile development principles that we love. Service applications should
evolve incrementally — and so its APIs. Of course, our API specification
will and should evolve iteratively in different cycles; however, each
starting with draft status and early team and peer review feedback.
API may change and profit from implementation concerns and automated
testing feedback. API evolution during development life cycle may
include breaking changes for not yet productive features and as long as
we have aligned the changes with the clients. Hence, API First does
not mean that you must have 100% domain and requirement understanding
and can never produce code before you have defined the complete API and
get it confirmed by peer review.

On the other hand, API First obviously is in conflict with the bad
practice of publishing API definition and asking for peer review after
the service integration or even the service productive operation has
started. It is crucial to request and get early feedback — as early as
possible, but not before the API changes are comprehensive with focus
to the next evolution step and have a certain quality (including API
Guideline compliance), already confirmed via team internal reviews.

3. General guidelines

 The titles are marked with the corresponding labels: MUST,
SHOULD, MAY.

MUST follow SailPoint API Guidelines

 You must design your APIs consistently with these guidelines; use our API linter for automated rule checks, but not every rule can be automated.

SHOULD follow API first principle

 You should follow the API First Principle, more specifically:

	
You should define APIs first, before coding their implementation,
using OpenAPI as the specification language

	
You should call for early review feedback from peers and client developers

MUST provide API specification using OpenAPI

 We use the OpenAPI specification as the standard to define API specification files.
OpenAPI 3.0 must be supported, but you MAY support other versions, like Swagger 2.

The API specification files should be subject to version control using a source code management system.

You must publish the component API specification with the deployment of the implementing service, and, hence,
make it discoverable for the appropriate group via our API Portal.

MUST provide detailed API description

 Within the API specification, you must provide sufficient information in
the description of the API to facilitate proper usage. This may include:

	
API scope, purpose, and use cases

	
Major edge cases

	
Major dependencies

SHOULD provide API user manual

 In addition to the API Specification, it is good practice to provide a separate API
user manual to improve client developer experience, especially of engineers that are
less experienced in using this API. A helpful API user manual typically describes
the following API aspects:

	
concrete examples of API usage

	
edge cases, error situation details, and repair hints

	
architecture context and dependencies - including figures and sequence flows

The user manual must be published online, e.g. via our documentation hosting
platform service. Please do not forget to include a link to the API user
manual into the API specification using the #/externalDocs/url property.

This manual does not have to be created by engineering, but could be created by a documentation team, Developer Relations or by community effort.
It is important to provide extra documentation for our developers to reduce the number of support related questions that come in.

MUST describe every parameter and property

 Every query/path parameter and request/response property in the API specification must have a description

MUST provide an example for every parameter and property

 Every query/path parameter and request/response property in the API specification must have an accurate example.
An accurate example will show the API consumer what an input/output value will realistically look like, and could even be used in a real request/response.
However, take care to not use personally identifiable information or secrets in examples.

Every operation (POST, PUT, PATCH, etc) may define one or more operation level examples.

SHOULD keep operation summaries at five or less words

 Certain tools, like Postman, have a limit on how many words can be displayed within the operation summary.
It is helpful for consumers to have short summaries that describe the operation at its most basic level to improve readability for consumers.

MUST provide a valid operationId in camelCase for each operation

 operationId is a unique string used to identify an operation. These IDs must be unique among all operations described in your API.

Certain tools, like the OpenAPI Generator use this value to name the corresponding methods in code.

The following listAccessProfiles is an example of an operationId.

 get:
 operationId: listAccessProfiles
 tags:
 - Access Profiles
 summary: List Access Profiles
 description: >-
 This API returns a list of Access Profiles.

Use this guide when creating your operationIds. Your operationId must start with one of the approved values for each method.

GET methods that return an array

	
compare

	
export

	
get

	
list

	
search

GET methods that return a single result

	
get

	
search

	
test

POST methods

	
approve

	
cancel

	
complete

	
create

	
delete

	
disable

	
enable

	
export

	
hide

	
import

	
move

	
ping

	
reject

	
reset

	
search

	
send

	
set

	
show

	
start

	
submit

	
sync

	
unlock

	
unregister

	
update

PUT methods

	
put

	
set

PATCH methods

	
patch

	
update

DELETE methods

	
delete

	
remove

MUST provide a valid tag for each operation

 Each operation must be assigned exactly one tag that categorizes it. No operation should have more than one tag.

This tag must also exist in the root specification.

 get:
 operationId: listAccessProfiles
 tags:
 - Access Profiles

MUST write APIs using U.S. English

4. Meta information

MUST contain API meta information

 API specifications must contain the following OpenAPI meta information
to allow for API management:

	
#/info/title as (unique) identifying, functional descriptive name of the API

	
#/info/version to distinguish API specifications versions following
semantic rules

	
#/info/description containing a proper description of the API

	
#/info/x-audience intended target audience of the API (see rule 219)

We’ll automatically generate #/info/contact/* when creating the public Open API spec.

MUST use semantic versioning

 OpenAPI allows to specify the API specification version in
#/info/version. To share a common semantic of version information we
expect API designers to comply to
Semantic Versioning 2.0 rules 1 to 8 and 11 restricted to the format
<MAJOR>.<MINOR>.<PATCH> for versions as follows:

	
Increment the MAJOR version when you make incompatible API changes
after having aligned this changes with consumers,

	
Increment the MINOR version when you add new functionality in a
backwards-compatible manner, and

	
Optionally increment the PATCH version when you make
backwards-compatible bug fixes or editorial changes not affecting the
functionality.

Additional Notes:

	
Pre-release versions (rule 9) and
build metadata (rule 10) must not
be used in API version information.

	
While patch versions are useful for fixing typos etc, API designers
are free to decide whether they increment it or not.

	
API designers should consider to use API version 0.y.z
(rule 4) for initial API design.

Example:

 openapi: 3.0.1
info:
 title: Parcel Service API
 description: API for <...>
 version: 1.3.7
 <...>

We’ll automatically generate the global #/info/version when creating public Open API spec.
Each individual endpoint spec author need not worry about this attribute.

MUST provide API audience

 Each API must be classified with respect to the intended target audience
supposed to consume the API, to facilitate differentiated standards on APIs
for discoverability, changeability, quality of design and documentation, as
well as permission granting. We differentiate the following API audience
groups with clear organizational and legal boundaries:

internal-company
external-public

This is only for documentation generation purposes and not related to
authorization—authz concerns must be addressed with normal policies.

 /info/x-audience:
 type: string
 x-extensible-enum:
 - internal-company
 - external-public
 description: |
 Intended target audience of the API. Relevant for standards around
 quality of design and documentation, reviews, discoverability,
 changeability.

Exactly one audience per API specification is allowed. For this reason
a smaller audience group is intentionally included in the wider group
and thus does not need to be declared additionally. If parts of your API
have a different target audience, we recommend to split API specifications
along the target audience — even if this creates redundancies (rationale (internal link)).

Example:

 openapi: 3.0.1
info:
 x-audience: internal-company
 title: Service to Service API
 description: API for <...>
 version: 1.2.4
 <...>

5. Security

MUST secure endpoints with OAuth 2.0

 Every public API endpoint must be secured using OAuth 2.0. We have defined two security schemas, userAuth and applicationAuth. In the rare case that an endpoint does not require authentication, and is completely open to the public, then an empty object can be used instead.

	
userAuth is the authentication mechanism that assigns a user context to a token, such as a Personal Access Token or OAuth token granted via authorization code.

	
applicationAuth is the authentication mechanism that provides a token that does not have a user context. This is a result of the OAuth client credentials grant flow.

	
{} is how we indicate that an endpoint does not require authentication to access.

Each endpoint must select one or both of the security schemes depending on which one(s) it supports. For example, if an endpoint supports only userAuth, then the path would be defined as follows:

 get:
 operationId: getAccessProfile
 tags:
 - Access Profiles
 summary: Get an Access Profile
 description: >-
 This API returns an Access Profile by its ID.
 security:
 - userAuth: [idn:access-profile:read]

If the endpoint supports both security schemes, then it would be defined as follows:

 get:
 operationId: getAccessProfile
 tags:
 - Access Profiles
 summary: Get an Access Profile
 description: >-
 This API returns an Access Profile by its ID.
 security:
 - userAuth: [idn:access-profile:read]
 - applicationAuth: [idn:access-profile:read]

If the endpoint does not require authentication, then it would be defined as follows:

 get:
 operationId: getAccessProfile
 tags:
 - Access Profiles
 summary: Get an Access Profile
 description: >-
 This API returns an Access Profile by its ID.
 security:
 - {}

MUST define and assign permissions (scopes)

 Each endpoint must document every scope needed to access the endpoint. See Defining Scopes for API Authorization for more information on adding new scopes.

To appropriately document a scope on an endpoint, use the following OpenAPI properties:

 security:
 - userAuth:
 - 'idn:task-definition:read'
 - 'idn:task-definition:manage'

A full example on an endpoint might look like this:

 get:
 tags:
 - tenants
 summary: Get Tenant
 description: Get tenant object based on current auth token
 operationId: getTenant
 responses:
 '200':
 description: successful operation
 content:
 application/json:
 schema:
 $ref: '../schemas/Tenant.yaml'
 security:
 - userAuth:
 - 'idn:accounts:read'

MUST define user levels (capabilities) needed by an endpoint

 Each endpoint that specifies userAuth as one of the allowed security types must also document the user levels required to access the endpoint. See the user level matrix for more information.

To appropriately document user level(s) on an endpoint, use the x-sailpoint-userLevels attribute in the path definition. The technical name must be used as seen in the user level matrix (ex. ORG_ADMIN instead of Admin).

 x-sailpoint-userLevels:
 - ORG_ADMIN
 - SOURCE_ADMIN

A full example on an endpoint might look like this:

 get:
 tags:
 - tenants
 summary: Get Tenant
 description: Get tenant object based on current auth token
 operationId: getTenant
 responses:
 '200':
 description: successful operation
 content:
 application/json:
 schema:
 $ref: '../schemas/Tenant.yaml'
 security:
 - userAuth:
 - 'idn:accounts:read'
 x-sailpoint-userLevels:
 - ORG_ADMIN
 - SOURCE_ADMIN

MUST Document necessary license add-on to use an API collection

 If an API collection requires additional product licenses to enable the feature, then each required license must be documented in the API collection description.

MUST follow naming convention for permissions (scopes)

 TBD

6. Compatibility

MUST not break backward compatibility

 Change APIs, but keep all consumers running. Consumers usually have independent
release lifecycles, focus on stability, and avoid changes that do not provide
additional value. APIs are contracts between service providers and service
consumers that cannot be broken via unilateral decisions.

There are two techniques to change APIs without breaking them:

	
follow rules for compatible extensions

	
introduce new API versions and still support older versions

We strongly encourage using compatible API extensions and discourage versioning
(see SHOULD avoid versioning and MUST use URI versioning below). The following guidelines for service providers
(SHOULD prefer compatible extensions) and consumers (MUST prepare clients to accept compatible API extensions) enable us (having Postel’s Law in mind) to
make compatible changes without versioning.

Note: There is a difference between incompatible and breaking changes.
Incompatible changes are changes that are not covered by the compatibility
rules below. Breaking changes are incompatible changes deployed into operation,
and thereby breaking running API consumers. Usually, incompatible changes are
breaking changes when deployed into operation. However, in specific controlled
situations it is possible to deploy incompatible changes in a non-breaking way,
if no API consumer is using the affected API aspects (see also Deprecation guidelines).

Hint: Please note that the compatibility guarantees are for the "on the wire"
format. Binary or source compatibility of code generated from an API definition
is not covered by these rules. If client implementations update their
generation process to a new version of the API definition, it has to be
expected that code changes are necessary.

SHOULD prefer compatible extensions

 API designers should apply the following rules to evolve RESTful APIs for
services in a backward-compatible way:

	
Add only optional, never mandatory fields.

	
Never change the semantic of fields (e.g. changing the semantic from
customer-number to customer-id, as both are different unique customer keys)

	
Input fields may have (complex) constraints being validated via server-side
business logic. Never change the validation logic to be more restrictive and
make sure that all constraints are clearly defined in description.

	
Enum ranges can be reduced when used as input parameters, only if the server
is ready to accept and handle old range values too. Enum range can be reduced
when used as output parameters.

	
Enum ranges cannot be extended when used for output parameters — clients may
not be prepared to handle it. However, enum ranges can be extended when used
for input parameters.

	
Support redirection in case an URL has to change 301 (Moved Permanently).

MUST prepare clients to accept compatible API extensions

 Service clients should apply the robustness principle:

	
Be conservative with API requests and data passed as input, e.g. avoid to
exploit definition deficits like passing megabytes of strings with
unspecified maximum length.

	
Be tolerant in processing and reading data of API responses, more
specifically…​

Service clients must be prepared for compatible API extensions of service
providers:

	
Be tolerant with unknown fields in the payload (see also Fowler’s
"TolerantReader" post),
i.e. ignore new fields but do not eliminate them from payload if needed for
subsequent PUT requests.

	
Be prepared that x-extensible-enum return parameter may deliver new values;
either be agnostic or provide default behavior for unknown values.

	
Be prepared to handle HTTP status codes not explicitly specified in endpoint
definitions. Note also, that status codes are extensible. Default handling is
how you would treat the corresponding 2xx code (see
RFC 7231 Section 6).

	
Follow the redirect when the server returns HTTP status code 301 (Moved
Permanently).

SHOULD design APIs conservatively

 Designers of service provider APIs should be conservative and accurate in what
they accept from clients:

	
Unknown input fields in payload or URL should not be ignored; servers should
provide error feedback to clients via an HTTP 400 response code.

	
Be accurate in defining input data constraints (like formats, ranges, lengths
etc.) — and check constraints and return dedicated error information in case
of violations.

	
Prefer being more specific and restrictive (if compliant to functional
requirements), e.g. by defining length range of strings. It may simplify
implementation while providing freedom for further evolution as compatible
extensions.

Not ignoring unknown input fields is a specific deviation from Postel’s Law
(e.g. see also

The
Robustness Principle Reconsidered) and a strong recommendation. Servers might
want to take different approach but should be aware of the following problems
and be explicit in what is supported:

	
Ignoring unknown input fields is actually not an option for PUT, since it
becomes asymmetric with subsequent GET response and HTTP is clear about the
PUT replace semantics and default roundtrip expectations (see
RFC 7231 Section 4.3.4). Note, accepting (i.e. not
ignoring) unknown input fields and returning it in subsequent GET responses
is a different situation and compliant to PUT semantics.

	
Certain client errors cannot be recognized by servers, e.g. attribute name
typing errors will be ignored without server error feedback. The server
cannot differentiate between the client intentionally providing an additional
field versus the client sending a mistakenly named field, when the client’s
actual intent was to provide an optional input field.

	
Future extensions of the input data structure might be in conflict with
already ignored fields and, hence, will not be compatible, i.e. break clients
that already use this field but with different type.

In specific situations, where a (known) input field is not needed anymore, it
either can stay in the API definition with "not used anymore" description or
can be removed from the API definition as long as the server ignores this
specific parameter.

MUST always return JSON objects as top-level data structures

 In a response body, you must always return a JSON object (and not e.g. an
array) as a top level data structure to support future extensibility. JSON
objects support compatible extension by additional attributes. This allows you
to easily extend your response and e.g. add pagination later, without breaking
backwards compatibility. See MAY use pagination links where applicable for an example.

Maps (see SHOULD define maps using additionalProperties), even though technically objects, are also forbidden as top
level data structures, since they don’t support compatible, future extensions.

MUST treat OpenAPI specification as open for extension by default

 The OpenAPI specification is not very specific on default extensibility
of objects, and redefines JSON-Schema keywords related to extensibility, like
additionalProperties. Following our compatibility guidelines, OpenAPI
object definitions are considered open for extension by default as per
Section
5.18 "additionalProperties" of JSON-Schema.

When it comes to OpenAPI, this means an additionalProperties declaration
is not required to make an object definition extensible:

	
API clients consuming data must not assume that objects are closed for
extension in the absence of an additionalProperties declaration and must
ignore fields sent by the server they cannot process. This allows API
servers to evolve their data formats.

	
For API servers receiving unexpected data, the situation is slightly
different. Instead of ignoring fields, servers may reject requests whose
entities contain undefined fields in order to signal to clients that those
fields would not be stored on behalf of the client. API designers must
document clearly how unexpected fields are handled for PUT, POST, and
PATCH requests.

API formats must not declare additionalProperties to be false, as this
prevents objects being extended in the future.

Note that this guideline concentrates on default extensibility and does not
exclude the use of additionalProperties with a schema as a value, which might
be appropriate in some circumstances, e.g. see SHOULD define maps using additionalProperties.

SHOULD avoid versioning

 When changing your RESTful APIs, do so in a compatible way and avoid generating
additional API versions. Multiple versions can significantly complicate
understanding, testing, maintaining, evolving, operating and releasing our
systems
(supplementary
reading).

If changing an API can’t be done in a compatible way, then proceed in one of
these three ways:

	
create a new resource (variant) in addition to the old resource variant

	
create a new service endpoint — i.e. a new application with a new API (with a
new domain name)

	
create a new API version supported in parallel with the old API by the same
microservice

MUST use URI versioning

 SailPoint uses URI versioning with the following structure:

/v{version number}

Ex. /v3, /v4, etc.

Note: Beta APIs fall under /beta.

MUST follow versioned API requirements

 All versioned APIs must adhere to the following requirements

	
Can be internal or external.

	
NO BREAKING CHANGES! (barring necessary security fixes)

	
Supported (sev-1!)

	
Documented in OpenAPI specification format

	
Minimum 2 year support obligation

Breaking changes include, but are not limited to, the following:

	
Removal of fields on resource models

	
Changing an existing field on a post/put/patch from optional to required (or not permitted)

	
Removal of resources

	
URI changes

	
New or different response status codes

	
Other semantic changes (including new values in enumerated types if those values are part of the API contract)

	
Example: Consider a list API that returns multiple object types with a common standardized representation and the objects have a TYPE field. Adding a new TYPE value would represent a breaking change UNLESS the the contract for the API specifies that new types may be added. If there is no means of filtering based on TYPE in this example, this is probably an unacceptable term for the API contract.

If in doubt, ask! Call out any uncertainties during API review or during the design process.

Non-breaking changes may be added to an existing live version. Here are some examples of non-breaking changes:

	
New fields on response models (that do not change the meaning of the model)

	
Making a currently required field on an input model optional

	
Adding new optional fields to input models (as long as the default value of the field preserves the previous meaning of the model)

	
Net new resources

	
New query parameters and filterable/sortable fields (as long as they are optional and the existing behavior is preserved if the new parameters are not passed)

MUST follow beta API requirements

	
Beta route in styx (example: "beta/sim-integrations")

	
Supported (during business hours, no sev-1s)

	
Documented in OpenAPI specification format (and marked as beta)

	
Breaking changes must be announced ahead of time to all stakeholders

	
Can be internal or external.

	
This is expected to be a stable, usable API that is available for external and internal integration.

7. Deprecation

 Sometimes it is necessary to phase out an API endpoint, an API version, or an
API feature, e.g. if a field or parameter is no longer supported or a whole
business functionality behind an endpoint is supposed to be shut down. As long
as the API endpoints and features are still used by consumers these shut downs
are breaking changes and not allowed. To progress the following deprecation
rules have to be applied to make sure that the necessary consumer changes and
actions are well communicated and aligned using deprecation and sunset
dates.

SHOULD Confer with clients on accepted deprecation time-span

 Before shutting down an API, version of an API, or API feature the producer should make sure that all clients have given their consent on a sunset date.
Producers should help consumers to migrate to a potential new API or API feature by providing a migration manual and clearly state the time line
for replacement availability and sunset (see also SHOULD add Deprecation and Sunset header to responses). The producer should wait for all clients of a
sunset API feature to migrate before shutting down the deprecated API.

MUST reflect deprecation in API specifications

 The API deprecation must be part of the API specification.

If an API endpoint (operation object), an input argument (parameter object),
an in/out data object (schema object), or on a more fine grained level, a
schema attribute or property should be deprecated, the producers must set
deprecated: true for the affected element and add further explanation to the
description section of the API specification. If a future shut down is
planned, the producer must provide a sunset date and document in details
what consumers should use instead and how to migrate.

MUST monitor usage of deprecated API scheduled for sunset

 Owners of an API, API version, or API feature used in production that is
scheduled for sunset must monitor the usage of the sunset API, API version, or
API feature in order to observe migration progress and avoid uncontrolled
breaking effects on ongoing consumers. See also MUST monitor API usage.

Must notify customers using deprecated APIs on a timely basis to help them move onto newer APIs, especially as the API moves closer to its sunset date.

SHOULD add Deprecation and Sunset header to responses

 During the deprecation phase, the producer should add a Deprecation: <date-time>
(see draft: RFC
Deprecation HTTP Header) and - if also planned - a Sunset: <date-time> (see
RFC 8594) header on each response affected by a
deprecated element (see MUST reflect deprecation in API specifications).

The Deprecation header can either be set to true - if a feature is retired
-, or carry a deprecation time stamp, at which a replacement will become/became
available and consumers must not on-board any longer (see MUST not start using deprecated APIs). The optional
Sunset time stamp carries the information when consumers latest have to stop
using a feature. The sunset date should always offer an eligible time interval
for switching to a replacement feature.

 Deprecation: Tue, 31 Dec 2024 23:59:59 GMT
Sunset: Wed, 31 Dec 2025 23:59:59 GMT

If multiple elements are deprecated the Deprecation and Sunset headers are
expected to be set to the earliest time stamp to reflect the shortest interval
consumers are expected to get active.

Note: adding the Deprecation and Sunset header is not sufficient to gain
client consent to shut down an API or feature.

Hint: In earlier guideline versions, we used the Warning header to provide
the deprecation info to clients. However, Warning header has a less specific
semantics, will be obsolete with
draft: RFC HTTP
Caching, and our syntax was not compliant with RFC 7234 — Warning header.

SHOULD add monitoring for Deprecation and Sunset header

 Clients should monitor the Deprecation and Sunset headers in HTTP responses
to get information about future sunset of APIs and API features (see SHOULD add Deprecation and Sunset header to responses).
We recommend that client owners build alerts on this monitoring information to
ensure alignment with service owners on required migration task.

Hint: In earlier guideline versions, we used the Warning header to provide
the deprecation info (see hint in SHOULD add Deprecation and Sunset header to responses).

MUST not start using deprecated APIs

 Clients must not start using deprecated APIs, API versions, or API features.

8. JSON guidelines

 These guidelines provides recommendations for defining JSON data at SailPoint.
JSON here refers to RFC 7159 (which updates RFC 4627),
the "application/json" media type and custom JSON media types defined for APIs.
The guidelines clarifies some specific cases to allow SailPoint JSON data to have
an idiomatic form across teams and services.

The first some of the following guidelines are about property names, the later
ones about values.

SHOULD pluralize array names

 Names of arrays should be pluralized to indicate that they contain multiple values.
This implies in turn that object names should be singular.

MUST property names must be ASCII camelCase

 Property names are restricted to ASCII strings. The first character must be a lower case letter, there must not be any spaces, and new words should start with a capital letter instead of a space. For example, “new client table” would be “newClientTable” in camelCase.

“ID” is common in field names, and must be presented in camel case as follows:

	
If “ID” appears as the first word, then it is entirely lowercase (ex. “id”).

	
If “ID” appears after the first word, then the “I” is capitalized and the “d” is lowercase (ex. “userId”).

MUST declare enum values using UPPER_SNAKE_CASE string

 Enumerations must be represented as string typed OpenAPI definitions of
request parameters or model properties.
Enum values (using enum or x-extensible-enum) need to consistently use
the upper-snake case format, e.g. VALUE or YET_ANOTHER_VALUE.
This approach allows to clearly distinguish values from properties or other elements.

Exception: This rule does not apply for case sensitive values sourced from outside
API definition scope, e.g. for language codes from ISO 639-1, or when
declaring possible values for a rule 137 [sort parameter].

SHOULD define maps using additionalProperties

 A "map" here is a mapping from string keys to some other type. In JSON this is
represented as an object, the key-value pairs being represented by property
names and property values. In OpenAPI schema (as well as in JSON schema) they
should be represented using additionalProperties with a schema defining the
value type. Such an object should normally have no other defined properties.

The map keys don’t count as property names in the sense of rule 118,
and can follow whatever format is natural for their domain. Please document
this in the description of the map object’s schema.

Here is an example for such a map definition (the translations property):

 components:
 schemas:
 Message:
 description:
 A message together with translations in several languages.
 type: object
 properties:
 message_key:
 type: string
 description: The message key.
 translations:
 description:
 The translations of this message into several languages.
 The keys are [IETF BCP-47 language tags](https://tools.ietf.org/html/bcp47).
 type: object
 additionalProperties:
 type: string
 description:
 the translation of this message into the language identified by the key.

An actual JSON object described by this might then look like this:

 { "message_key": "color",
 "translations": {
 "de": "Farbe",
 "en-US": "color",
 "en-GB": "colour",
 "eo": "koloro",
 "nl": "kleur"
 }
}

MUST not use null for boolean properties

 Schema based JSON properties that are by design booleans must not be
presented as nulls. A boolean is essentially a closed enumeration of two
values, true and false. If the content has a meaningful null value,
strongly prefer to replace the boolean with enumeration of named values
or statuses - for example accepted_terms_and_conditions with true or
false can be replaced with terms_and_conditions with values yes, no and
unknown.

MUST define a default value for boolean properties

 All optional boolean properties must have a default value defined. If the property
is required, it is not required to have a default value.

SHOULD avoid using qualifying verbs

 Avoid using qualifying verbs, especially on boolean fields, e.g.

	
Discouraged: isEnabled

	
Recommended: enabled

SHOULD use positive semantics for boolean fields

 The name of a Boolean field should preferably express semantics such that true indicates a positive attribute, action, capability, etc.

	
Discouraged: "disabled": true

	
Recommended: "enabled": false

MUST use a field name that suggests the value type when referencing an object

 When a field contains an ID or reference to an foreign object, not the parent object, the field name should suggest the value type:

	
Discouraged: "owner": "2c90b0c06460804b016460f9f59b0015"

	
Recommended: "ownerId": "2c90b0c06460804b016460f9f59b0015"

For example, the following request/response for an account object uses the proper naming for object references.

“id” refers to the account object being requested, and all other object references include the object reference name (i.e. sourceId, identityId, etc.)

 {
 "id": "id12345",
 "name": "aName",
 "created": "2019-08-24T14:15:22Z",
 "modified": "2019-08-24T14:15:22Z",
 "sourceId": "2c9180835d2e5168015d32f890ca1581",
 "identityId": "2c9180835d2e5168015d32f890ca1581",
 "attributes": { },
 "authoritative": true,
 "description": "string",
 "disabled": true,
 "locked": true,
 "nativeIdentity": "string",
 "systemAccount": true,
 "uncorrelated": true,
 "uuid": "string",
 "manuallyCorrelated": true,
 "hasEntitlements": true
}

SHOULD name references to foreign objects as <objectName>Ref

	
Discouraged: "launcher": "frank.dogs"

	
Recommended: "launcherRef": {"resource": "identities", "type": "ALIAS", "value": "frank.dogs"}

Example

 {
 "id": "2c9180857182305e0171993735622948",
 "name": "Alison Ferguso",
 "alias": "alison.ferguso",
 "email": "alison.ferguso@acme-solar.com",
 "status": "Active",
 "managerRef": {
 "type": "IDENTITY",
 "id": "2c9180a46faadee4016fb4e018c20639",
 "name": "Thomas Edison"
 },
 "attributes":[]
}

SHOULD avoid using nested objects

 In general, we discourage nesting DTOs inside others. This has typically led to bloated DTOs and made it complicated to
enforce authorization requirements and other business rules around those nested objects. It is preferable instead for the
DTO to have a field containing an id or reference that allows the nested object to be separately fetched.

It is recognized, of course, that particular use cases may require nesting objects inside each other. For example, if a
UI module needs to display data from a set of 100 IdentityRequests and their child IdentityRequestItems, it makes no
sense to require the UI to make one API call to get the list of IdentityRequests and then 100 additional calls to get the
IdentityRequestItems for each.

It is preferable in these cases to use a summary DTO for the nested objects that contains the minimum amount of detail
required to support the known or plausible use case(s). For example, if the only reason I need to include the owner of
an object is so the caller can display their first and last name, then it is better to do something like the following:

 {
 ...
 "owner": {
 "type": "IDENTITY",
 "id": "2c90b0c06460804b016460f9f59b001",
 "firstName": "Frank",
 "lastName": "Dogs"
 }
}

One particular valid use of nested objects occurs when a DTO abstracts over a set of types that may have significantly
different attributes. In this case the non-general fields of the DTO should be pushed down to a nested object, with a
type field on the main object being used as a discriminator. For example, if a DTO could represent either an Access Profile
or a Role, the former case could be implemented as follows:

 {
 ...
 "type": "ACCESS_PROFILE",
 ...
 "accessProfileInfo": {
 "appRefs": ["app1", "app2"]
 },
 "roleInfo": null
}

MUST define a default for optional values

 All properties must define a default value for optional properties. This must documented in the specification so clients
know what value will be used should they ignore a property.

MUST define the “required” attribute for request/response objects and parameters

 All request/response schemas MUST define the “required” attribute for each property and parameter per the OpenAPI specification.

For request/response objects, see https://swagger.io/docs/specification/data-models/data-types/#required. If all properties within an object are optional, then the "required" attribute may be omitted.

For path and query parameters, see https://swagger.io/docs/specification/describing-parameters/

Generally, query parameters should be optional, but there are cases where a query parameter is required. In these cases,
make sure to set the “required” attribute for the query parameters to true.

MUST use same semantics for null and absent properties

 TBD

MUST use the “nullable” attribute for properties that can be null

 If a property or parameter can return null, then it must have the nullable: true OpenAPI property.

MUST not use null for empty arrays

 Empty array values can unambiguously be represented as the empty list, [].

SHOULD define dates properties compliant with RFC 3339

 Use the date and time formats defined by RFC 3339:

	
for "date" use strings matching
date-fullyear "-" date-month "-" date-mday, for example: 2015-05-28

	
for "date-time" use strings matching full-date "T" full-time, for
example 2015-05-28T14:07:17Z

Note that the
OpenAPI format
"date-time" corresponds to "date-time" in the RFC) and 2015-05-28
for a date (note that the OpenAPI format "date" corresponds to "full-date" in
the RFC). Both are specific profiles, a subset of the international standard
ISO 8601.

A zone offset may be used (both, in request and responses) — this is simply
defined by the standards. However, we encourage restricting dates to UTC and
without offsets. For example 2015-05-28T14:07:17Z rather than
2015-05-28T14:07:17+00:00. From experience we have learned that zone offsets
are not easy to understand and often not correctly handled. Note also that
zone offsets are different from local times that might be including daylight
saving time. Localization of dates should be done by the services that provide
user interfaces, if required.

When it comes to storage, all dates should be consistently stored in UTC
without a zone offset. Localization should be done locally by the services that
provide user interfaces, if required.

Sometimes it can seem data is naturally represented using numerical timestamps,
but this can introduce interpretation issues with precision, e.g. whether to
represent a timestamp as 1460062925, 1460062925000 or 1460062925.000. Date
strings, though more verbose and requiring more effort to parse, avoid this
ambiguity.

SHOULD define time durations and intervals properties conform to ISO 8601

 Schema based JSON properties that are by design durations and intervals could
be strings formatted as recommended by ISO 8601
(Appendix A of RFC 3339 contains a grammar for durations).

9. Data formats

MUST use JSON as payload data interchange format

 Use JSON (RFC 7159) to represent structured (resource) data
passed with HTTP requests and responses as body payload.
The JSON payload must use a JSON object as top-level data
structure (if possible) to allow for future extension. This also applies to
collection resources, where you ad-hoc would use an array — see also
MUST always return JSON objects as top-level data structures.

Additionally, the JSON payload must comply to the more restrictive Internet JSON (RFC 7493),
particularly

	
Section 2.1 on encoding of characters, and

	
Section 2.3 on object constraints.

As a consequence, a JSON payload must

	
use UTF-8 encoding

	
consist of valid Unicode strings, i.e. must not
contain non-characters or surrogates, and

	
contain only unique member names (no duplicate
names).

MAY pass non-JSON media types using data specific standard formats

 TBD

SHOULD use standard media types

 You should use standard media types (defined in media type registry
of Internet Assigned Numbers Authority (IANA)) as content-type (or accept) header
information. More specifically, for JSON payload you should use the standard media type
application/json (or application/problem+json for MUST support problem JSON).

You should avoid using custom media types like application/x.sailpoint.article+json.
Custom media types beginning with x bring no advantage compared to the
standard media type for JSON, and make automated processing more difficult.

MUST encode embedded binary data in base64url

 Exposing binary data using an alternative media type is generally preferred.
See the rule above.

If an alternative content representation is not desired then binary data should
be embedded into the JSON document as a base64url-encoded string property
following RFC 7493 Section 4.4.

MUST use standardized property formats

 JSON Schema
and OpenAPI
define several data formats, e.g. date, time, email, and url, based on ISO and IETF standards.
The following table lists these formats including additional formats useful in an e-commerce environment.
You should use these formats, whenever applicable.

	type
	format
	Specification
	Example

	integer

	int32

	
	7721071004

	integer

	int64

	
	772107100456824

	integer

	bigint

	
	77210710045682438959

	number

	float

	IEEE 754-2008

	3.1415927

	number

	double

	IEEE 754-2008

	3.141592653589793

	number

	decimal

	
	3.141592653589793238462643383279

	string

	bcp47

	BCP 47

	"en-DE"

	string

	byte

	RFC 7493

	"dGVzdA=="

	string

	date

	RFC 3339

	"2019-07-30"

	string

	date-time

	RFC 3339

	"2019-07-30T06:43:40.252Z"

	string

	email

	RFC 5322

	"example@sailpoint.de"

	string

	gtin-13

	GTIN

	"5710798389878"

	string

	hostname

	RFC 1034

	"www.sailpoint.de"

	string

	ipv4

	RFC 2673

	"104.75.173.179"

	string

	ipv6

	RFC 2673

	"2600:1401:2::8a"

	string

	iso-3166

	ISO 3166-1 alpha-2

	"DE"

	string

	iso-4217

	ISO 4217

	"EUR"

	string

	iso-639

	ISO 639-1

	"de"

	string

	json-pointer

	RFC 6901

	"/items/0/id"

	string

	password

	
	"secret"

	string

	regex

	ECMA 262

	"^[a-z0-9]+$"

	string

	time

	RFC 3339

	"06:43:40.252Z"

	string

	uri

	RFC 3986

	"https://www.sailpoint.de/"

	string

	uri-template

	RFC 6570

	"/users/{id}"

	string

	uuid

	RFC 4122

	"e2ab873e-b295-11e9-9c02-…​"

Remark: Please note that this list of standard data formats is not exhaustive
and everyone is encouraged to propose additions.

MUST use standard date and time formats

JSON payload

 Read more about date and time format in SHOULD define dates properties compliant with RFC 3339.

HTTP headers

 Http headers including the proprietary headers use the
HTTP date format defined in RFC 7231.

MUST use standards for country, language and currency codes

 Use the following standard formats for country, language and currency
codes:

	
Country codes: ISO 3166-1-alpha2 two letter country codes

	
Hint: It is "GB", not "UK", even though "UK" has seen some use at sailpoint

	
Language codes: ISO 639-1 two letter language codes

	
Language variant tags: BCP 47

	
It is a compatible extension of ISO 639-1, providing additional
information for language usage, like region (using ISO 3166-1),
variant, script and others.

	
Currency codes: ISO 4217 three letter currency codes

MUST define format for number and integer types

 Whenever an API defines a property of type number or integer, the
precision must be defined by the format as follows to prevent clients
from guessing the precision incorrectly, and thereby changing the value
unintentionally:

	type
	format
	specified value range

	integer

	int32

	integer between -231 and 231-1

	integer

	int64

	integer between -263 and 263-1

	integer

	bigint

	arbitrarily large signed integer number

	number

	float

	IEEE 754-2008/ISO 60559:2011 binary32 decimal number

	number

	double

	IEEE 754-2008/ISO 60559:2011 binary64 decimal number

	number

	decimal

	arbitrarily precise signed decimal number

The precision must be translated by clients and servers into the most
specific language types. E.g. for the following definitions the most
specific language types in Java will translate to BigDecimal for
Money.amount and int or Integer for the OrderList.page_size:

 components:
 schemas:
 Money:
 type: object
 properties:
 amount:
 type: number
 description: Amount expressed as a decimal number of major currency units
 format: decimal
 example: 99.95
 ...

 OrderList:
 type: object
 properties:
 page_size:
 type: integer
 description: Number of orders in list
 format: int32
 example: 42

MUST use proper description format for the filters query param

 The OpenAPI specification does not provide dedicated properties for defining filters,
so filters must be defined in the description of the filters query param. Our users
and our tooling rely on filter descriptions following a strict format. The following
snippet is an example of how to properly format the description for filters.

 in: query
name: filters
schema:
 type: string
description: >-
 Filter results using the standard syntax described in [V3 API Standard Collection Parameters](https://developer.sailpoint.com/idn/api/standard-collection-parameters#filtering-results)

 Filtering is supported for the following fields and operators:

 id: *eq, in*

 name: *eq, sw*

 created: *gt, lt, ge, le*

 modified: *gt, lt, ge, le*

 owner.id: *eq, in*

 requestable: *eq*

 source.id: *eq, in*
example: name eq "SailPoint Support"
required: false

	
Always include the first two lines in your description to point users towards the extended documenation.

	
Always use two new lines between lines. The use of one new line will result in the text not displaying on separate lines in the API documentaiton.

	
Always bold the property name using two asterisks before and after the name.

	
Only document one property per line.

	
Always italicize the operators by using a single asterisk before an after the list of operators.

	
Only use the operators listed here. If you are introducing a new operator not in the list, please contact the Developer Relations team to update the list.

	
Always use a comma and a space to separate operators.

	
Do not add any additional text in the description, such as examples, clarifications, etc.

MUST use proper description format for the sorters query param

 The OpenAPI specification does not provide dedicated properties for defining sorter,
so sorters must be defined in the description of the sorters query param. Our users
and our tooling rely on filter descriptions following a strict format. The following
snippet is an example of how to properly format the description for sorters.

 in: query
name: sorters
schema:
 type: string
 format: comma-separated
description: >-
 Sort results using the standard syntax described in [V3 API Standard Collection Parameters](https://developer.sailpoint.com/idn/api/standard-collection-parameters#sorting-results)

 Sorting is supported for the following fields: **name, created, modified**
example: name,-modified
required: false

	
Always include the first line in your description to point users towards the extended documenation.

	
Always use two new lines between lines. The use of one new line will result in the text not displaying on separate lines in the API documentaiton.

	
The second line must start with "Sorting is supported for the following fields:"

	
Wrap all supported properties in double asterisks to make them bold.

	
Use a comma and a space to separate supported properties.

	
Do not add any additional lines or text in the description. There should only be two lines: the extended documentation and the list of supporter properties.

10. Common data types

 Definitions of data objects that are good candidates for wider usage. Below you can find a list of common data types
used in the guideline:

	
Money object

	
Problem object

MUST use the common money object

 Use the following common money structure:

 Money:
 type: object
 properties:
 amount:
 type: number
 description: >
 The amount describes unit and subunit of the currency in a single value,
 where the integer part (digits before the decimal point) is for the
 major unit and fractional part (digits after the decimal point) is for
 the minor unit.
 format: decimal
 example: 99.95
 currency:
 type: string
 description: 3 letter currency code as defined by ISO-4217
 format: iso-4217
 example: EUR
 required:
 - amount
 - currency

APIs are encouraged to include a reference to the global schema for Money.

 SalesOrder:
 properties:
 grand_total:
 $ref: 'https://sailpoint-oss.github.io/sailpoint-api-guidelines/money-1.0.0.yaml#/Money'

Please note that APIs have to treat Money as a closed data type, i.e. it’s not meant to be used in an inheritance hierarchy. That means the following usage is not allowed:

 {
 "amount": 19.99,
 "currency": "EUR",
 "discounted_amount": 9.99
}

Cons

	
Violates the Liskov Substitution Principle

	
Breaks existing library support, e.g. Jackson Datatype Money

	
Less flexible since both amounts are coupled together, e.g. mixed currencies are impossible

A better approach is to favor composition over inheritance:

 {
 "price": {
 "amount": 19.99,
 "currency": "EUR"
 },
 "discounted_price": {
 "amount": 9.99,
 "currency": "EUR"
 }
}

Pros

	
No inheritance, hence no issue with the substitution principle

	
Makes use of existing library support

	
No coupling, i.e. mixed currencies is an option

	
Prices are now self-describing, atomic values

Notes

 Please be aware that some business cases (e.g. transactions in Bitcoin) call for a higher precision, so applications must be prepared to accept values with unlimited precision, unless explicitly stated otherwise in the API specification.

Examples for correct representations (in EUR):

	
42.20 or 42.2 = 42 Euros, 20 Cent

	
0.23 = 23 Cent

	
42.0 or 42 = 42 Euros

	
1024.42 = 1024 Euros, 42 Cent

	
1024.4225 = 1024 Euros, 42.25 Cent

Make sure that you don’t convert the "amount" field to float /
double types when implementing this interface in a specific language
or when doing calculations. Otherwise, you might lose precision.
Instead, use exact formats like Java’s
BigDecimal.
See Stack Overflow for more
info.

Some JSON parsers (NodeJS’s, for example) convert numbers to floats by default.
After discussing the pros and cons we’ve decided on "decimal" as our amount
format. It is not a standard OpenAPI format, but should help us to avoid parsing
numbers as float / doubles.

MUST use common field names and semantics

 TBD

11. API naming

MUST/SHOULD use functional naming schema

 TBD

MUST use lowercase separate words with hyphens for path segments

	
Use kebab-case for path segments

	
Use {camelCase} with surrounding brackets to indicate path parameters

Example:

 /shipment-orders/{shipmentOrderId}

MUST camelCase for query parameters

 Examples:

 customerNumber, orderId, billingAddress

We need to have a consistent look and feel for our APIs. In the case of query parameters,
which can reference actual properties in the response object, camelCase preserves a consistent look and feel.

MUST pluralize resource names

 When defining a path segment for a collection, the resource name must be plural to indicate it is a collection of resources.

Example:

/users, /companies/{companyId}/employees/{employeeId}

MUST not use /api as base path

 In most cases, all resources provided by a service are part of the
public API, and therefore should be made available under the root "/"
base path.

If the service should also support non-public, internal APIs
— for specific operational support functions, for example — we encourage
you to maintain two different API specifications and provide
API audience. For both APIs, you should not use /api as base path.

We see API’s base path as a part of deployment variant configuration.
Therefore, this information has to be declared in the
server object.

MUST use normalized paths without empty path segments and trailing slashes

 You must not specify paths with duplicate or trailing slashes, e.g.
/customers//addresses or /customers/. As a consequence, you must also not
specify or use path variables with empty string values.

Reasoning: Non standard paths have no clear semantics. As a result, behavior
for non standard paths varies between different HTTP infrastructure components
and libraries. This may leads to ambiguous and unexpected results during
request handling and monitoring.

We recommend to implement services robust against clients not following this
rule. All services should normalize
request paths before processing by removing duplicate and trailing slashes.
Hence, the following requests should refer to the same resource:

 GET /orders/{orderId}
GET /orders/{orderId}/
GET /orders//{orderId}

Note: path normalization is not supported by all framework out-of-the-box.
Services are required to support at least the normalized path while rejecting
all alternatives paths, if failing to deliver the same resource.

MUST stick to conventional query parameters

 If you provide query support for searching, sorting, filtering, and
paginating, you must stick to the following naming conventions:

Pagination

	
limit: Integer that specifies the maximum number of results to return. If not specified a default limit will be used.

	
offest: Integer that specifies the offset of the first result from the beginning of the collection

	
count: Boolean that indicates whether a total count will be returned, factoring in any filter parameters, in the X-Total-Count response header.

filters: an item will only be included in the returned array if the filters expression evaluates
to true for that item. Each endpoint that implements filters must clearly define in the API
spec what operations and fields are supported.

sorters: a set of comma-separated field names. Each field name may be optionally prefixed with a "-"
character, which indicates the sort is descending based on the value of that field. Otherwise, the sort
is ascending. Each endpoint that implements sorters must clearly define which fields are supported.

See https://developer.sailpoint.com/docs/standard_collection_parameters.html#standard-collection-parameters
for implementation details for each of the above parameters.

Note: Additional query parameters are allowed, but effort should be made to fit them within the five listed above.

MUST Customer org name must never appear in the path of public APIs

 The customer organization is provided in the session context that is generated on the back end, and therefore does not need to be in the URL.

12. Resources

SHOULD avoid actions — think about resources

 REST is all about your resources, so consider the domain entities that take part in web service interaction,
and aim to model your API around these using the standard HTTP methods as operation indicators. For example,
rather than creating a specific action for completing a certification campaign, prefer to use PATCH to
update the completed status of the campaign.

Request

 PATCH v1/campaigns/{campaignId}

Body

 {
 “completed”: true
}

Sometimes, standard HTTP methods aren’t specific enough to indicate the action you wish to perform on a
resource, or there is complex business logic on the back end that can’t be satisfied by PATCHing a single
field. In these cases, it is advisable to use the following URI format for specific resource actions:

Request

 POST v1/campaigns/{campaignId}/remediation-scan

SHOULD model complete business processes

 TBD

SHOULD define useful resources

 As a rule of thumb resources should be defined to cover 90% of all its client’s
use cases. A useful resource should contain as much information as necessary,
but as little as possible. A great way to support the last 10% is to allow
clients to specify their needs for more/less information by supporting
filtering and embedding.

SHOULD keep URLs verb-free

 The API describes resources, so the only place where actions should appear is
in the HTTP methods. In URLs, use only nouns. Instead of thinking of actions
(verbs), it’s often helpful to think about putting a message in a letter box:
e.g., instead of having the verb cancel in the url, think of sending a
message to cancel an order to the cancellations letter box on the server
side.

MUST use domain-specific resource names

 API resources represent elements of the application’s domain model. Using
domain-specific nomenclature for resource names helps developers to understand
the functionality and basic semantics of your resources. It also reduces the
need for further documentation outside the API definition. For example,
"sales-order-items" is superior to "order-items" in that it clearly indicates
which business object it represents. Along these lines, "items" is too general.

MUST use URL-friendly resource identifiers: [a-zA-Z0-9:._\-/]*

 TBD

MUST identify resources and sub-resources via path segments

 Some API resources may contain or reference sub-resources. Sub-resources should be
referenced by their name and identifier in the path segments as follows:

 /resources/{resourceId}/sub-resources/{subResourceId}

In order to improve the consumer experience, you should aim for intuitively
understandable URLs, where each sub-path is a valid reference to a resource or
a set of resources. For instance, if
/partners/{partnerId}/addresses/{addressId} is valid, then, in principle,
also /partners/{partnerId}/addresses, /partners/{partnerId} and
/partners must be valid. Examples of concrete url paths:

 /shopping-carts/de:1681e6b88ec1/items/1
/shopping-carts/de:1681e6b88ec1
/content/images/9cacb4d8
/content/images

Note: resource identifiers may be build of multiple other resource
identifiers.

Exception: In some situations the resource identifier is not passed as a
path segment but via the authorization information, e.g. an authorization
token or session cookie. Here, it is reasonable to use self as
pseudo-identifier path segment. For instance, you may define /employees/self
or /employees/self/personal-details as resource paths —  and may additionally
define endpoints that support identifier passing in the resource path, like
define /employees/{emplId} or /employees/{emplId}/personal-details.

SHOULD consider using (non-)nested URLs

 If a sub-resource is only accessible via its parent resource and may not exist
without parent resource, consider using a nested URL structure, for instance:

 /shoping-carts/de/1681e6b88ec1/cart-items/1

However, if the resource can be accessed directly via its unique id, then the
API should expose it as a top-level resource. For example, customer has a
collection for sales orders; however, sales orders have globally unique id and
some services may choose to access the orders directly, for instance:

 /customers/1637asikzec1
/sales-orders/5273gh3k525a

MUST not use sequential, numerical IDs

 Numerical, sequential IDs are considered a security risk because malicious actors can
enumerate through the IDs to obtain unauthorized information. API producers must
use GUIDs or natural keys that aren’t sequential.

SHOULD limit number of resource types

 TBD

SHOULD limit number of sub-resource levels

 There are main resources (with root url paths) and sub-resources (or nested
resources with non-root urls paths). Use sub-resources if their life cycle is
(loosely) coupled to the main resource, i.e. the main resource works as
collection resource of the subresource entities. You should use ⇐ 3
sub-resource (nesting) levels — more levels increase API complexity and url
path length. (Remember, some popular web browsers do not support URLs of more
than 2000 characters.)

13. HTTP requests and responses

MUST use HTTP methods correctly

 Be compliant with the standardized HTTP method semantics summarized as follows:

Creating an Object

 POST requests are idiomatically used to create single resources on a
collection resource endpoint, but other semantics on single resources endpoint
are equally possible. The semantic for collection endpoints is best described
as "please add the enclosed representation to the collection resource
identified by the URL". The semantic for single resource endpoints is best described
as "please execute the given well specified request on the resource identified
by the URL".

	
Modeled as POST /…​/plural-noun, where plural-noun indicates the type of object being created.

	
on a successful POST request, the server will create one or multiple new resources and provide their URI/URLs in the response

	
successful POST requests will usually generate 200 (if resources have been updated), 201 (if resources have been created),
202 (if the request was accepted but has not been finished yet), and exceptionally 204 with Location header (if the actual resource is not returned).

	
If the POST is used to create or update a resource, then the response payload needs to include every field from the request, and may include additional fields.

	
If the POST is used as an action, then the response may be different from the request schema.

	
Specifying a value for a system-generated field in the input results in a 400 Bad Request response.

Note: By using POST to create resources the resource ID must not be passed as
request input date by the client, but created and maintained by the service and
returned with the response payload.

Apart from resource creation, POST should be also used for scenarios that cannot
be covered by the other methods sufficiently. However, in such cases make sure to
document the fact that POST is used as a workaround (see e.g. GET with body).

Hint: Posting the same resource twice is not required to be idempotent
(check MUST fulfill common method properties) and may result in multiple resources. However, you SHOULD consider to design POST and PATCH idempotent to
prevent this.

Reading a Single Object

	
Modeled as GET /…​/plural-noun/{nounId}

	
On success, returns a 200 with the DTO.

	
A 404 is returned if the referenced object is not found.

	
Query params are allowed, for example, to return the object at different levels of detail.

	
Is free of side-effects.

Reading a List of Objects

	
Modeled as GET /…​/plural-noun.

	
For API version 3, on success, returns a 200 with an array of objects.

 [
 {
 "id": "123",
 "name": "John"
 },
 ...
]

	
Proposed for API version 4, on success, returns a 200 with a JSON array of objects enveloped inside an object. By returning
an object as the top level for all responses, we allow our APIs to extend without breaking backwards
compatibility. If there was ever a need to add an additional field to a response that returns an
array (ex. pagination links in the body), then we would need to break the API by wrapping it in an
object. By requiring objects at the top level from the start, we avoid this in the future.

 {
 "results": [...],
 "count": ...
}

	
Supports pagination via limit and offset query parameters unless the back end data store makes this impossible or prohibitively expensive.

	
The default value for limit is 250 unless the endpoint documentation states otherwise.

	
The standard filters query parameter is preferred over custom filtering query params.

	
If filters are used, the supported fields and operations are whitelisted. Unsupported filters should result in an error response.

	
If filters refer to fields in nested objects, then "." notation is used, for example filters=owner.name eq "leah.pierce"

	
Custom query params are allowed if filters cannot be used.

	
If at all possible, supports reading a list of objects by their ids, either in the form of a filter, i.e. filters=id in (id0, id1, …​, idN) or a custom query param.

	
Use of single boolean-valued params should be avoided; strings, enumerated values, or comma-separated values are preferred.

	
The standard sorters query parameter may be used for sorting.

	
If sorters are used, the supported fields are whitelisted.

	
Results are not implicitly filtered or scoped based on the current logged in user. If such filtering is required it is via an explicit query param taking an identity id. By convention, me can stand in for the currently logged in user’s identity id as the value for such a param.

	
Is free of side-effects.

Get with Body Payload

 APIs sometimes face the problem, that they have to provide extensive structured request information with GET, that may conflict
with the size limits of clients, load-balancers, and servers. As we require APIs to be standard conform (request body payload
in GET must be ignored on server side), API designers have to check the following two options:

	
GET with URL encoded query parameters: when it is possible to encode the request information in query parameters,
respecting the usual size limits of clients, gateways, and servers, this should be the first choice. The
request information can either be provided via multiple query parameters or by a single structured URL encoded string.

	
POST with body payload content: when a GET with URL encoded query parameters is not possible, a POST
request with body payload must be used, and explicitly documented with a hint like in the following example:

 paths:
 /products:
 post:
 description: >
 [GET with body payload](https://sailpoint-oss.github.io/sailpoint-api-guidelines/#get-with-body) - no resources created:
 Returns all products matching the query passed as request input payload.
 requestBody:
 required: true
 content:
 ...

Updating an Object by Full Replacement

 Modeled as PUT /…​/plural-noun/{nounId}

PUT requests are used to update (and sometimes to create) entire
resources – single or collection resources. The semantic is best described
as "please put the enclosed representation at the resource mentioned by
the URL, replacing any existing resource.".

	
PUT requests are usually applied to single resources, and not to collection
resources, as this would imply replacing the entire collection

	
PUT requests are usually robust against non-existence of resources by
implicitly creating the resource before updating

	
on successful PUT requests, the server will replace the entire resource
addressed by the URL with the representation passed in the payload (subsequent
reads will deliver the same payload)

	
successful PUT requests will usually generate 200 or 204 (if the
resource was updated – with or without actual content returned), and 201 (if
the resource was created)

	
Returns a 404 if the object does not exist and the endpoint does not support PUT as a means of creation.

	
Does a complete replacement of the referenced object and does not attempt to merge the input DTO with the existing object.

Important: It is good practice to prefer POST over PUT for creation of
(at least top-level) resources. This leaves the resource ID management under
control of the service and not the client, and focus PUT on its usage for updates.
However, in situations where PUT is used for resource creation,
the resource IDs are maintained by the client and passed as a URL path segment.
Putting the same resource twice is required to be idempotent and to result
in the same single resource instance (see MUST fulfill common method properties).

Hint: To prevent unnoticed concurrent updates and duplicate creations when
using PUT, you MAY consider to support ETag together with If-Match/If-None-Match header to allow the server to react on stricter demands that
expose conflicts and prevent lost updates. See also Optimistic locking in RESTful APIs for
details and options.

Updating an Object by Targeted Modification

 PATCH requests are used to update parts of single resources, i.e. where only
a specific subset of resource fields should be replaced. The semantic is best
described as "please change the resource identified by the URL according to my
change request". The semantic of the change request is not defined in the HTTP
standard and must be described in the API specification by using suitable media
types.

	
Modeled as PATCH /../plural-noun/{nounId}

	
PATCH requests are usually applied to single resources as patching entire
collection is challenging

	
PATCH requests are usually not robust against non-existence of resource
instances

	
on successful PATCH requests, the server will update parts of the resource
addressed by the URL as defined by the change request in the payload

	
successful PATCH requests will usually generate 200 or 204 (if
resources have been updated with or without updated content returned)

	
Returns a 404 if the object does not exist.

	
If synchronous, and the patch cannot be successfully applied, returns a 400.

	
Mutable DTO fields are documented.

Deleting an Object

 DELETE requests are used to delete resources. The semantic is best
described as "please delete the resource identified by the URL".

	
Modeled as DELETE /../plural-noun/{nounId}

	
DELETE requests are usually applied to single resources, not on
collection resources, as this would imply deleting the entire collection.

	
DELETE request can be applied to multiple resources at once using query
parameters on the collection resource (see DELETE with query parameters).

	
successful DELETE requests will usually generate 200 (if the deleted
resource is returned) or 204 (if no content is returned).

	
failed DELETE requests will usually generate 404 (if the resource cannot
be found) or 410 (if the resource was already deleted before).

Important: After deleting a resource with DELETE, a GET request on the
resource is expected to either return 404 (not found) or 410 (gone)
depending on how the resource is represented after deletion. Under no
circumstances the resource must be accessible after this operation on its
endpoint.

DELETE with query parameters

 DELETE request can have query parameters. Query parameters should be used as
filter parameters on a resource and not for passing context information to
control the operation behavior.

 DELETE /resources?param1=value1¶m2=value2...¶mN=valueN

Note: When providing DELETE with query parameters, API designers must
carefully document the behavior in case of (partial) failures to manage client
expectations properly.

The response status code of DELETE with query parameters requests should be
similar to usual DELETE requests. In addition, it may return the status code
207 using a payload describing the operation results (see MUST use code 207 for batch or bulk requests for
details).

DELETE with body payload

 In rare cases DELETE may require additional information, that cannot be
classified as filter parameters and thus should be transported via request body payload, to
perform the operation. Since RFC-7231 states, that
DELETE has an undefined semantic for payloads, we recommend to utilize POST.
In this case the POST endpoint must be documented with the hint DELETE with body
analog to how it is defined for GET with body. The response status code of
DELETE with body requests should be similar to usual DELETE requests.

HEAD (Optional)

 HEAD requests are used to retrieve the header information of single
resources and resource collections.

	
HEAD has exactly the same semantics as GET, but returns headers only, no
body.

Hint: HEAD is particular useful to efficiently lookup whether large
resources or collection resources have been updated in conjunction with the
ETag-header.

OPTIONS (Optional)

 OPTIONS requests are used to inspect the available operations (HTTP
methods) of a given endpoint.

	
OPTIONS responses usually either return a comma separated list of methods
in the Allow header or as a structured list of link templates

Note: OPTIONS is rarely implemented, though it could be used to
self-describe the full functionality of a resource.

MUST fulfill common method properties

 Request methods in RESTful services can be…​

	
safe - the operation semantic is defined to be read-only,
meaning it must not have intended side effects, i.e. changes, to the server
state.

	
idempotent - the operation has the same
intended effect on the server state, independently whether it is executed
once or multiple times. Note: this does not require that the operation is
returning the same response or status code.

	
cacheable - to indicate that responses are
allowed to be stored for future reuse. In general, requests to safe methods
are cachable, if it does not require a current or authoritative response
from the server.

Note: The above definitions, of intended (side) effect allows the server
to provide additional state changing behavior as logging, accounting, pre-
fetching, etc. However, these actual effects and state changes, must not be
intended by the operation so that it can be held accountable.

Method implementations must fulfill the following basic properties according
to RFC 7231:

	Method
	Safe
	Idempotent
	Cacheable

	GET

	✔ Yes

	✔ Yes

	✔ Yes

	HEAD

	✔ Yes

	✔ Yes

	✔ Yes

	POST

	✗ No

	⚠️ No, but SHOULD consider to design POST and PATCH idempotent

	⚠️ May, but only if specific
POST endpoint is safe. Hint: not supported by most caches.

	PUT

	✗ No

	✔ Yes

	✗ No

	PATCH

	✗ No

	⚠️ No, but SHOULD consider to design POST and PATCH idempotent

	✗ No

	DELETE

	✗ No

	✔ Yes

	✗ No

	OPTIONS

	✔ Yes

	✔ Yes

	✗ No

	TRACE

	✔ Yes

	✔ Yes

	✗ No

SHOULD consider to design POST and PATCH idempotent

 In many cases it is helpful or even necessary to design POST and PATCH
idempotent for clients to expose conflicts and prevent resource duplicate
(a.k.a. zombie resources) or lost updates, e.g. if same resources may be
created or changed in parallel or multiple times. To design an idempotent
API endpoint owners should consider to apply one of the following three
patterns.

	
A resource specific conditional key provided via If-Match header
in the request. The key is in general a meta information of the resource,
e.g. a hash or version number, often stored with it. It allows to detect
concurrent creations and updates to ensure idempotent behavior (see
MAY consider to support ETag together with If-Match/If-None-Match header).

	
A resource specific secondary key provided as resource property in the
request body. The secondary key is stored permanently in the resource. It
allows to ensure idempotent behavior by looking up the unique secondary
key in case of multiple independent resource creations from different
clients (see MAY use secondary key for idempotent POST design).

	
A client specific idempotency key provided via Idempotency-Key header
in the request. The key is not part of the resource but stored temporarily
pointing to the original response to ensure idempotent behavior when
retrying a request (see MAY consider to support Idempotency-Key header).

Note: While conditional key and secondary key are focused on handling
concurrent requests, the idempotency key is focused on providing the exact
same responses, which is even a stronger requirement than the idempotency defined above. It can be combined with the two other patterns.

To decide, which pattern is suitable for your use case, please consult the
following table showing the major properties of each pattern:

	
	Conditional Key
	Secondary Key
	Idempotency Key

	Applicable with

	PATCH

	POST

	POST/PATCH

	HTTP Standard

	✔ Yes

	✗ No

	✗ No

	Prevents duplicate (zombie) resources

	✔ Yes

	✔ Yes

	✗ No

	Prevents concurrent lost updates

	✔ Yes

	✗ No

	✗ No

	Supports safe retries

	✔ Yes

	✔ Yes

	✔ Yes

	Supports exact same response

	✗ No

	✗ No

	✔ Yes

	Can be inspected (by intermediaries)

	✔ Yes

	✗ No

	✔ Yes

	Usable without previous GET

	✗ No

	✔ Yes

	✔ Yes

Note: The patterns applicable to PATCH can be applied in the same way to
PUT and DELETE providing the same properties.

If you mainly aim to support safe retries, we suggest to apply conditional key and secondary key pattern before the Idempotency Key pattern.

MAY use secondary key for idempotent POST design

 The most important pattern to design POST idempotent for creation is to
introduce a resource specific secondary key provided in the request body, to
eliminate the problem of duplicate (a.k.a zombie) resources.

The secondary key is stored permanently in the resource as alternate key or
combined key (if consisting of multiple properties) guarded by a uniqueness
constraint enforced server-side, that is visible when reading the resource.
The best and often naturally existing candidate is a unique foreign key, that
points to another resource having one-on-one relationship with the newly
created resource, e.g. a parent process identifier.

A good example here for a secondary key is the shopping cart ID in an order
resource.

Note: When using the secondary key pattern without Idempotency-Key all
subsequent retries should fail with status code 409 (conflict). We suggest
to avoid 200 here unless you make sure, that the delivered resource is the
original one implementing a well defined behavior. Using 204 without content
would be a similar well defined option.

MUST define collection format of header and query parameters

 TBD

SHOULD design simple query languages using query parameters

 TBD

MUST design complex query languages using JSON

 Minimalistic query languages based on query parameters are suitable
for simple use cases with a small set of available filters that are combined
in one way and one way only (e.g. and semantics). Simple query languages are
generally preferred over complex ones.

Some APIs will have a need for sophisticated and more complex query languages.
Dominant examples are APIs around search (incl. faceting) and product catalogs.

Aspects that set those APIs apart from the rest include but are not limited to:

	
Unusual high number of available filters

	
Dynamic filters, due to a dynamic and extensible resource model

	
Free choice of operators, e.g. and, or and not

APIs that qualify for a specific, complex query language are encouraged to
use nested JSON data structures and define them using OpenAPI directly. The
provides the following benefits:

	
Data structures are easy to use for clients

	
No special library support necessary

	
No need for string concatenation or manual escaping

	
Data structures are easy to use for servers

	
No special tokenizers needed

	
Semantics are attached to data structures rather than text tokens

	
Consistent with other HTTP methods

	
API is defined in OpenAPI completely

	
No external documents or grammars needed

	
Existing means are familiar to everyone

JSON-specific rules and most certainly needs to make use
of the GET-with-body pattern.

Example

 The following JSON document should serve as an idea how a structured query
might look like.

 {
 "and": {
 "name": {
 "match": "Alice"
 },
 "age": {
 "or": {
 "range": {
 ">": 25,
 "<=": 50
 },
 "=": 65
 }
 }
 }
}

Feel free to also get some inspiration from:

	
Elastic Search: Query DSL

	
GraphQL: Queries

MUST document implicit filtering

 Sometimes certain collection resources or queries will not list all the
possible elements they have, but only those for which the current client
is authorized to access.

Implicit filtering could be done on:

	
the collection of resources being returned on a GET request

	
the fields returned for the detail information of the resource

In such cases, the fact that implicit filtering is applied must be documented
in the API specification’s endpoint description. Example:

If an employee of the company Foo accesses one of our business-to-business
service and performs a GET /business-partners, it must, for legal reasons,
not display any other business partner that is not owned or contractually
managed by her/his company. It should never see that we are doing business
also with company Bar.

Response as seen from a consumer working at FOO:

 {
 "items": [
 { "name": "Foo Performance" },
 { "name": "Foo Sport" },
 { "name": "Foo Signature" }
]
}

Response as seen from a consumer working at BAR:

 {
 "items": [
 { "name": "Bar Classics" },
 { "name": "Bar pour Elle" }
]
}

The API Specification should then specify something like this:

 paths:
 /business-partner:
 get:
 description: >-
 Get the list of registered business partner.
 Only the business partners to which you have access to are returned.

14. HTTP status codes and errors

MUST specify success and error responses

 APIs should define the functional, business view and abstract from
implementation aspects. Success and error responses are a vital part to
define how an API is used correctly.

Therefore, you must define all success and service specific error
responses in your API specification. Both are part of the interface definition
and provide important information for service clients to handle standard as
well as exceptional situations.

Hint: In most cases it is not useful to document all technical errors,
especially if they are not under control of the service provider. Thus unless
a response code conveys application-specific functional semantics or is used
in a none standard way that requires additional explanation, multiple error
response specifications can be combined using the following pattern:

 responses:
 ...
 default:
 description: error occurred - see status code and problem object for more information.
 content:
 "application/problem+json":
 schema:
 $ref: 'https://sailpoint-oss.github.io/sailpoint-api-guidelines/problem-1.0.1.yaml#/Problem'

API designers should also think about a troubleshooting board as part of
the associated online API documentation. It provides information and handling
guidance on application-specific errors and is referenced via links from the
API specification. This can reduce service support tasks and contribute to
service client and provider performance.

MUST use a standard error response object

 All error responses must use the standard error response DTO object defined at
https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml.
This provides a consistent error response structure that can be easily consumed by clients.

MAY define application specific codes for the standard error response object

 If using the detailCode within the https://github.com/sailpoint/cloud-api-client-common/blob/master/api-specs/src/main/yaml/v3/schemas/ErrorResponseDto.yaml,
then the service owner is free to create their own logic for detail codes that will aid them in debugging issues with the service.

MUST use the most accurate response example for each endpoint

 Each endpoint must define a response example for every success and error response that can be returned.
These examples must accurately reflect what can be returned by the endpoint. Default examples shared across
multiple endpoints may be used as long as they accurately reflect what can be returned by the endpoint. If a
default example doesn’t accurately reflect what can be returned by an endpoint, then that endpoint must
override the default example with one that is accurate.

MUST use standard HTTP status codes

 You must only use standardized HTTP status codes consistently with their
intended semantics. You must not invent new HTTP status codes.

RFC standards define ~60 different HTTP status codes with specific semantics
(mainly RFC7231 and RFC 6585) — and there
are upcoming new ones, e.g.
draft
legally-restricted-status. See overview on all error codes on
Wikipedia or
via https://httpstatuses.com/) also inculding 'unofficial codes', e.g. used
by popular web servers like Nginx.

Below we list the most commonly used and best understood HTTP status codes,
consistent with their semantic in the RFCs. APIs should only use these to
prevent misconceptions that arise from less commonly used HTTP status codes.

Important: As long as your HTTP status code usage is well covered by the
semantic defined here, you should not describe it to avoid an overload with
common sense information and the risk of inconsistent definitions. Only if the
HTTP status code is not in the list below or its usage requires additional
information aside the well defined semantic, the API specification must provide
a clear description of the HTTP status code in the response.

Success codes

	Code
	Meaning
	Methods

	200

	OK - this is the standard success response

	<all>

	201

	Created - Returned on successful entity creation. You are
free to return either an empty response or the created resource in conjunction
with the Location header.
Always set the Location header.

	POST, PUT

	202

	Accepted - The request was successful and will be processed asynchronously.

	POST, PUT, PATCH, DELETE

	204

	No content - There is no response body.

	PUT, PATCH, DELETE

	207

	Multi-Status - The response body contains multiple status informations for
different parts of a batch/bulk request (see MUST use code 207 for batch or bulk requests).

	POST, (DELETE)

Redirection codes

	Code
	Meaning
	Methods

	301

	Moved Permanently - This and all future requests should be directed to the
given URI.

	<all>

	303

	See Other - The response to the request can be found under another URI using a
GET method.

	POST, PUT, PATCH, DELETE

	304

	Not Modified - indicates that a conditional GET or HEAD request would have
resulted in 200 response if it were not for the fact that the condition evaluated
to false, i.e. resource has not been modified since the date or version passed
via request headers If-Modified-Since or If-None-Match.

	GET, HEAD

Client side error codes

	Code
	Meaning
	Methods

	400

	Bad request - generic / unknown error. Should also be delivered in case of
input payload fails business logic validation.

	<all>

	401

	Unauthorized - the users must log in (this often means "Unauthenticated").

	<all>

	403

	Forbidden - the user is not authorized to use this resource.

	<all>

	404

	Not found - the resource is not found.

	<all>

	405

	Method Not Allowed - the method is not supported, see OPTIONS.

	<all>

	406

	Not Acceptable - resource can only generate content not acceptable according
to the Accept headers sent in the request.

	<all>

	408

	Request timeout - the server times out waiting for the resource.

	<all>

	409

	Conflict - request cannot be completed due to conflict, e.g. when two clients
try to create the same resource or if there are concurrent, conflicting updates.

	POST, PUT, PATCH, DELETE

	410

	Gone - resource does not exist any longer, e.g. when accessing a
resource that has intentionally been deleted.

	<all>

	412

	Precondition Failed - returned for conditional requests, e.g. If-Match if the
condition failed. Used for optimistic locking.

	PUT, PATCH, DELETE

	415

	Unsupported Media Type - e.g. clients sends request body without content type.

	POST, PUT, PATCH, DELETE

	423

	Locked - Pessimistic locking, e.g. processing states.

	PUT, PATCH, DELETE

	428

	Precondition Required - server requires the request to be conditional, e.g. to
make sure that the "lost update problem" is avoided (see MAY consider to support Prefer header to handle processing preferences).

	<all>

	429

	Too many requests - the client does not consider rate limiting and sent too
many requests (see MUST use code 429 with headers for rate limits).

	<all>

Server side error codes:

	Code
	Meaning
	Methods

	500

	Internal Server Error - a generic error indication for an unexpected server
execution problem (here, client retry may be sensible)

	<all>

	501

	Not Implemented - server cannot fulfill the request (usually implies future
availability, e.g. new feature).

	<all>

	503

	Service Unavailable - service is (temporarily) not available (e.g. if a
required component or downstream service is not available) — client retry may
be sensible. If possible, the service should indicate how long the client
should wait by setting the Retry-After header.

	<all>

MUST use most specific HTTP status codes

 You must use the most specific HTTP status code when returning information about your request
processing status or error situations. See the below table for examples of when to use the generic
400 vs a more specific 4xx

See https://github.com/sailpoint/cloud-api-client-common/blob/master/design-docs/v3/definition.md#response-codes-and-headers
for a list of response codes that SailPoint prefers to use.

If you encounter a scenario where two or more response codes are appropriate, prefer to use the response code that preserves the security of the system and does not hand out too much information to unauthorized users.

MUST use code 207 for batch or bulk requests

 Some APIs are required to provide either batch or bulk requests using
POST for performance reasons, i.e. for communication and processing
efficiency. In this case services may be in need to signal multiple response
codes for each part of an batch or bulk request. As HTTP does not provide
proper guidance for handling batch/bulk requests and responses, we herewith
define the following approach:

	
A batch or bulk request always responds with HTTP status code 207
unless a non-item-specific failure occurs.

	
A batch or bulk request may return 4xx/5xx status codes, if the
failure is non-item-specific and cannot be restricted to individual items of
the batch or bulk request, e.g. in case of overload situations or general
service failures.

	
A batch or bulk response with status code 207 always returns as payload
a multi-status response containing item specific status and/or monitoring
information for each part of the batch or bulk request.

Note: These rules apply even in the case that processing of all
individual parts fail or each part is executed asynchronously!

The rules are intended to allow clients to act on batch and bulk responses in
a consistent way by inspecting the individual results. We explicitly reject
the option to apply 200 for a completely successful batch as proposed in
Nakadi’s POST
/event-types/{name}/events as short cut without inspecting the result, as we
want to avoid risks and expect clients to handle partial
batch failures anyway.

The bulk or batch response may look as follows:

 BatchOrBulkResponse:
 description: batch response object.
 type: object
 properties:
 items:
 type: array
 items:
 type: object
 properties:
 id:
 description: Identifier of batch or bulk request item.
 type: string
 status:
 description: >
 Response status value. A number or extensible enum describing
 the execution status of the batch or bulk request items.
 type: string
 x-extensible-enum: [...]
 description:
 description: >
 Human readable status description and containing additional
 context information about failures etc.
 type: string
 required: [id, status]

Note: while a batch defines a collection of requests triggering
independent processes, a bulk defines a collection of independent
resources created or updated together in one request. With respect to
response processing this distinction normally does not matter.

MUST use code 429 with headers for rate limits

 APIs that wish to manage the request rate of clients must use the 429 (Too
Many Requests) response code, if the client exceeded the request rate (see
RFC 6585). Such responses must also contain header information
providing further details to the client. There are two approaches a service
can take for header information:

	
Return a Retry-After header indicating how long the client ought to wait
before making a follow-up request. The Retry-After header can contain a HTTP
date value to retry after or the number of seconds to delay. Either is
acceptable but APIs should prefer to use a delay in seconds.

	
Return a trio of X-RateLimit headers. These headers (described below) allow
a server to express a service level in the form of a number of allowing
requests within a given window of time and when the window is reset.

The X-RateLimit headers are:

	
X-RateLimit-Limit: The maximum number of requests that the client is
allowed to make in this window.

	
X-RateLimit-Remaining: The number of requests allowed in the current
window.

	
X-RateLimit-Reset: The relative time in seconds when the rate limit window
will be reset. Beware that this is different to Github and Twitter’s
usage of a header with the same name which is using UTC epoch seconds
instead.

The reason to allow both approaches is that APIs can have different
needs. Retry-After is often sufficient for general load handling and
request throttling scenarios and notably, does not strictly require the
concept of a calling entity such as a tenant or named account. In turn
this allows resource owners to minimise the amount of state they have to
carry with respect to client requests. The 'X-RateLimit' headers are
suitable for scenarios where clients are associated with pre-existing
account or tenancy structures. 'X-RateLimit' headers are generally
returned on every request and not just on a 429, which implies the
service implementing the API is carrying sufficient state to track the
number of requests made within a given window for each named entity.

MUST support problem JSON

 TBD

MUST not expose stack traces

 Stack traces contain implementation details that are not part of an API,
and on which clients should never rely. Moreover, stack traces can leak
sensitive information that partners and third parties are not allowed to
receive and may disclose insights about vulnerabilities to attackers.

15. Performance

SHOULD support partial responses via filtering

 Depending on your use case and payload size, you can significantly reduce
network bandwidth need by supporting filtering of returned entity fields.
Here, the client can explicitly determine the subset of fields he wants to
receive via the fields query parameter. (It is analogue to
GraphQL fields and simple
queries, and also applied, for instance, for
Google
Cloud API’s partial responses.)

Unfiltered

 GET http://api.example.org/users/123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "cddd5e44-dae0-11e5-8c01-63ed66ab2da5",
 "name": "John Doe",
 "address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
 "birthday": "1984-09-13",
 "friends": [{
 "id": "1fb43648-dae1-11e5-aa01-1fbc3abb1cd0",
 "name": "Jane Doe",
 "address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
 "birthday": "1988-04-07"
 }]
}

Filtered

 GET http://api.example.org/users/123?fields=(name,friends(name)) HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
 "name": "John Doe",
 "friends": [{
 "name": "Jane Doe"
 }]
}

The fields query parameter determines the fields returned with the response
payload object. For instance, (name) returns users root object with only
the name field, and (name,friends(name)) returns the name and the nested
friends object with only its name field.

OpenAPI doesn’t support you in formally specifying different return object
schemes depending on a parameter. When you define the field parameter, we
recommend to provide the following description: Endpoint supports filtering
of return object fields as described in
[Rule #157](https://opensource.zalando.com/restful-api-guidelines/#157)

The syntax of the query fields value is defined by the following
BNF grammar.

 <fields> ::= [<negation>] <fields_struct>
<fields_struct> ::= "(" <field_items> ")"
<field_items> ::= <field> ["," <field_items>]
<field> ::= <field_name> | <fields_substruct>
<fields_substruct> ::= <field_name> <fields_struct>
<field_name> ::= <dash_letter_digit> [<field_name>]
<dash_letter_digit> ::= <dash> | <letter> | <digit>
<dash> ::= "-" | "_"
<letter> ::= "A" | ... | "Z" | "a" | ... | "z"
<digit> ::= "0" | ... | "9"
<negation> ::= "!"

Note: Following the
principle of
least astonishment, you should not define the fields query parameter using
a default value, as the result is counter-intuitive and very likely not
anticipated by the consumer.

SHOULD allow optional embedding of sub-resources

 Embedding related resources (also know as Resource expansion) is a
great way to reduce the number of requests. In cases where clients know
upfront that they need some related resources they can instruct the
server to prefetch that data eagerly. Whether this is optimized on the
server, e.g. a database join, or done in a generic way, e.g. an HTTP
proxy that transparently embeds resources, is up to the implementation.

See MUST stick to conventional query parameters for naming, e.g. "embed" for steering of embedded
resource expansion. Please use the
BNF grammar, as
already defined above for filtering, when it comes to an embedding query
syntax.

Embedding a sub-resource can possibly look like this where an order
resource has its order items as sub-resource (/order/{orderId}/items):

 GET /order/123?embed=(items) HTTP/1.1

{
 "id": "123",
 "_embedded": {
 "items": [
 {
 "position": 1,
 "sku": "1234-ABCD-7890",
 "price": {
 "amount": 71.99,
 "currency": "EUR"
 }
 }
]
 }
}

16. Pagination

MUST support pagination

 Access to lists of data items must support pagination to protect the service
against overload as well as for best client side iteration and batch processing
experience. This holds true for all lists that are (potentially) larger than
just a few hundred entries.

There are two well known page iteration techniques:

	
Offset/Limit-based
pagination: numeric offset identifies the first page entry

	
Cursor/Limit-based — aka
key-based — pagination: a unique key element identifies the first page entry
(see also Facebook’s
guide)

The technical conception of pagination should also consider user experience
related issues. As mentioned in this
article,
jumping to a specific page is far less used than navigation via next/prev
page links.

We currently prefer to use Offset/Limit-based pagination.

Note: To provide a consistent look and feel of pagination patterns,
you must stick to the common query parameter names defined in MUST stick to conventional query parameters.

MAY use pagination links where applicable

 To simplify client design, APIs should support simplified hypertext
controls for paginating over collections whenever applicable as follows

 {
 "self": "https://myorg.api.identitynow.com/v3/resources?cursor=<self-position>",
 "first": "https://myorg.api.identitynow.com/v3/resources?cursor=<first-position>",
 "prev": "https://myorg.api.identitynow.com/v3/resources?cursor=<previous-position>",
 "next": "https://myorg.api.identitynow.com/v3/resources?cursor=<next-position>",
 "last": "https://myorg.api.identitynow.com/v3/resources?cursor=<last-position>",
 "query": {
 "query-param-<1>": ...,
 "query-param-<n>": ...
 },
 "items": [...]
}

Remarks:

	
It is essential to include the query parameters from the original requests in the hypertext controls provided for pagination. These parameters can either be encoded within the cursor or provided separately.

	
You should avoid providing a total count unless there is a clear need to do so. Very often, there are significant system and performance implications when supporting full counts. Especially, if the data set grows and requests become complex queries and filters drive full scans. While this is an implementation detail relative to the API, it is important to consider the ability to support serving counts over the life of a service.

	
The hypertext controls such as self, first, prev, next and last are all optional. You should include the relevant controls based on the specific requirements.

17. Hypermedia

MUST use REST maturity level 2

 We strive for a good implementation of
REST
Maturity Level 2 as it enables us to build resource-oriented APIs that
make full use of HTTP verbs and status codes. You can see this expressed
by many rules throughout these guidelines, e.g.:

	
SHOULD avoid actions — think about resources

	
SHOULD keep URLs verb-free

	
MUST use HTTP methods correctly

	
MUST use standard HTTP status codes

Although this is not HATEOAS, it should not prevent you from designing
proper link relationships in your APIs as stated in rules below.

SHOULD use full, absolute URI

 Links to other resource should always use full, absolute URI.

Motivation: Exposing any form of relative URI (no matter if the relative
URI uses an absolute or relative path) introduces avoidable client side
complexity. It also requires clarity on the base URI, which might not be given
when using features like embedding subresources. The primary advantage of
non-absolute URI is reduction of the payload size, which is better achievable
by following the recommendation to use gzip compression.

MUST use common hypertext controls

 When embedding links to other resources into representations you must use the
common hypertext control object. It contains at least one attribute:

	
href: The URI of the resource the hypertext control is linking to.
All our API are using HTTP(s) as URI scheme.

In API that contain any hypertext controls, the attribute name href is
reserved for usage within hypertext controls.

The schema for hypertext controls can be derived from this model:

 HttpLink:
 description: A base type of objects representing links to resources.
 type: object
 properties:
 href:
 description: Any URI that is using http or https protocol
 type: string
 format: uri
 required:
 - href

The name of an attribute holding such a HttpLink object specifies the
relation between the object that contains the link and the linked
resource. Implementations should use names from the IANA
Link Relation Registry whenever appropriate. As IANA link relation
names use hyphen-case notation, while this guide enforces snake_case
notation for attribute names, hyphens in IANA names have to be replaced
with underscores (e.g. the IANA link relation type version-history
would become the attribute version_history)

Specific link objects may extend the basic link type with additional
attributes, to give additional information related to the linked
resource or the relationship between the source resource and the linked
one.

E.g. a service providing "Person" resources could model a person who is
married with some other person with a hypertext control that contains
attributes which describe the other person (id, name) but also the
relationship "spouse" between the two persons (since):

 {
 "id": "446f9876-e89b-12d3-a456-426655440000",
 "name": "Peter Mustermann",
 "spouse": {
 "href": "https://...",
 "since": "1996-12-19",
 "id": "123e4567-e89b-12d3-a456-426655440000",
 "name": "Linda Mustermann"
 }
}

Hypertext controls are allowed anywhere within a JSON model. While this
specification would allow
HAL, we actually don’t
recommend/enforce the usage of HAL anymore as the structural separation
of meta-data and data creates more harm than value to the
understandability and usability of an API.

MUST not use link headers with JSON entities

 For flexibility and precision, we prefer links to be directly embedded in the
JSON payload instead of being attached using the uncommon link header syntax.
As a result, the use of the Link Header defined by RFC
8288 in conjunction with JSON media types is forbidden.

18. Standard headers

 This section describes a handful of standard headers, which we found raising the most
questions in our daily usage, or which are useful in particular circumstances
but not widely known.

MAY use standardized headers

 Use this list and
explicitly mention its support in your OpenAPI definition.

SHOULD use uppercase separate words with hyphens for HTTP headers

 This convention is followed by most standard headers e.g. as defined in
RFC 2616 and RFC 4229. Examples:

 If-Modified-Since
Accept-Encoding
Content-ID
Language

Note, HTTP standard defines headers as case-insensitive (RFC 7230, p.22).
However, for sake of readability and consistency you should follow the convention when
using standard or proprietary headers. Exceptions are common abbreviations like ID.

MUST use Content-* headers correctly

 Content or entity headers are headers with a Content- prefix. They describe
the content of the body of the message and they can be used in both, HTTP
requests and responses. Commonly used content headers include but are not
limited to:

	
Content-Disposition can indicate that the representation is supposed to be
saved as a file, and the proposed file name.

	
Content-Encoding indicates compression or encryption algorithms applied to
the content.

	
Content-Length indicates the length of the content (in bytes).

	
Content-Language indicates that the body is meant for people literate in
some human language(s).

	
Content-Location indicates where the body can be found otherwise (MAY use Content-Location header
for more details]).

	
Content-Range is used in responses to range requests to indicate which part
of the requested resource representation is delivered with the body.

	
Content-Type indicates the media type of the body content.

SHOULD use Location header instead of Content-Location header

 As the correct usage of Content-Location response header (see below) with respect
to caching and its method specific semantics is difficult, we discourage the use
of Content-Location.
In most cases it is sufficient to inform clients about the resource location
in create or re-direct responses by using the Location header while avoiding
the Content-Location specific ambiguities and complexities.

More details in RFC 7231 7.1.2 Location,
3.1.4.2 Content-Location

MAY use Content-Location header

 The Content-Location header is optional and can be used in successful write
operations (PUT, POST, or PATCH) or read operations (GET, HEAD) to
guide caching and signal a receiver the actual location of the resource
transmitted in the response body. This allows clients to identify the resource
and to update their local copy when receiving a response with this header.

The Content-Location header can be used to support the following use cases:

	
For reading operations GET and HEAD, a different location than the
requested URI can be used to indicate that the returned resource is subject
to content negotiations, and that the value provides a more specific
identifier of the resource.

	
For writing operations PUT and PATCH, an identical location to the
requested URI can be used to explicitly indicate that the returned resource
is the current representation of the newly created or updated resource.

	
For writing operations POST and DELETE, a content location can be used to
indicate that the body contains a status report resource in response to the
requested action, which is available at provided location.

Note: When using the Content-Location header, the Content-Type header
has to be set as well. For example:

 GET /products/123/images HTTP/1.1

HTTP/1.1 200 OK
Content-Type: image/png
Content-Location: /products/123/images?format=raw

MAY consider to support Prefer header to handle processing preferences

 The Prefer header defined in RFC 7240 allows clients to request
processing behaviors from servers. It pre-defines a number of preferences and
is extensible, to allow others to be defined. Support for the Prefer header
is entirely optional and at the discretion of API designers, but as an existing
Internet Standard, is recommended over defining proprietary "X-" headers for
processing directives.

The Prefer header can defined like this in an API definition:

 components:
 headers:
 - Prefer:
 description: >
 The RFC7240 Prefer header indicates that a particular server behavior
 is preferred by the client but is not required for successful completion
 of the request (see [RFC 7240](https://tools.ietf.org/html/rfc7240).
 The following behaviors are supported by this API:

 # (indicate the preferences supported by the API or API endpoint)
 * **respond-async** is used to suggest the server to respond as fast as
 possible asynchronously using 202 - accepted - instead of waiting for
 the result.
 * **return=<minimal|representation>** is used to suggest the server to
 return using 204 without resource (minimal) or using 200 or 201 with
 resource (representation) in the response body on success.
 * **wait=<delta-seconds>** is used to suggest a maximum time the server
 has time to process the request synchronously.
 * **handling=<strict|lenient>** is used to suggest the server to be
 strict and report error conditions or lenient, i.e. robust and try to
 continue, if possible.

 type: array
 items:
 type: string
 required: false

Note: Please copy only the behaviors into your Prefer header specification
that are supported by your API endpoint. If necessary, specify different
Prefer headers for each supported use case.

Supporting APIs may return the Preference-Applied header also defined in
RFC 7240 to indicate whether a preference has been applied.

MAY consider to support ETag together with If-Match/If-None-Match header

 When creating or updating resources it may be necessary to expose conflicts
and to prevent the 'lost update' or 'initially created' problem. Following
RFC 7232 "HTTP: Conditional Requests" this can be best accomplished
by supporting the ETag header together with the If-Match or If-None-Match
conditional header. The contents of an ETag: <entity-tag> header is either
(a) a hash of the response body, (b) a hash of the last modified field of the
entity, or (c) a version number or identifier of the entity version.

To expose conflicts between concurrent update operations via PUT, POST, or
PATCH, the If-Match: <entity-tag> header can be used to force the server to
check whether the version of the updated entity is conforming to the requested
<entity-tag>. If no matching entity is found, the operation is supposed a to
respond with status code 412 - precondition failed.

Beside other use cases, If-None-Match: * can be used in a similar way to
expose conflicts in resource creation. If any matching entity is found, the
operation is supposed a to respond with status code 412 - precondition
failed.

The ETag, If-Match, and If-None-Match headers can be defined as follows
in the API definition:

 components:
 headers:
 - ETag:
 description: |
 The RFC 7232 ETag header field in a response provides the entity-tag of
 a selected resource. The entity-tag is an opaque identifier for versions
 and representations of the same resource over time, regardless whether
 multiple versions are valid at the same time. An entity-tag consists of
 an opaque quoted string, possibly prefixed by a weakness indicator (see
 [RFC 7232 Section 2.3](https://tools.ietf.org/html/rfc7232#section-2.3).

 type: string
 required: false
 example: W/"xy", "5", "5db68c06-1a68-11e9-8341-68f728c1ba70"

 - If-Match:
 description: |
 The RFC7232 If-Match header field in a request requires the server to
 only operate on the resource that matches at least one of the provided
 entity-tags. This allows clients express a precondition that prevent
 the method from being applied if there have been any changes to the
 resource (see [RFC 7232 Section
 3.1](https://tools.ietf.org/html/rfc7232#section-3.1).

 type: string
 required: false
 example: "5", "7da7a728-f910-11e6-942a-68f728c1ba70"

 - If-None-Match:
 description: |
 The RFC7232 If-None-Match header field in a request requires the server
 to only operate on the resource if it does not match any of the provided
 entity-tags. If the provided entity-tag is `*`, it is required that the
 resource does not exist at all (see [RFC 7232 Section
 3.2](https://tools.ietf.org/html/rfc7232#section-3.2).

 type: string
 required: false
 example: "7da7a728-f910-11e6-942a-68f728c1ba70", *

Please see Optimistic locking in RESTful APIs for a detailed discussion and options.

MAY consider to support Idempotency-Key header

 When creating or updating resources it can be helpful or necessary to ensure a
strong idempotent behavior comprising same responses, to prevent duplicate
execution in case of retries after timeout and network outages. Generally, this
can be achieved by sending a client specific unique request key – that is not
part of the resource – via Idempotency-Key header.

The unique request key is stored temporarily, e.g. for 24 hours, together
with the response and the request hash (optionally) of the first request in a
key cache, regardless of whether it succeeded or failed. The service can now
look up the unique request key in the key cache and serve the response from
the key cache, instead of re-executing the request, to ensure idempotent
behavior. Optionally, it can check the request hash for consistency before
serving the response. If the key is not in the key store, the request is
executed as usual and the response is stored in the key cache.

This allows clients to safely retry requests after timeouts, network outages,
etc. while receive the same response multiple times. Note: The request retry
in this context requires to send the exact same request, i.e. updates of the
request that would change the result are off-limits. The request hash in the
key cache can protection against this misbehavior. The service is recommended
to reject such a request using status code 400.

Important: To grant a reliable idempotent execution semantic, the
resource and the key cache have to be updated with hard transaction semantics
– considering all potential pitfalls of failures, timeouts, and concurrent
requests in a distributed systems. This makes a correct implementation
exceeding the local context very hard.

The Idempotency-Key header must be defined as follows, but you are free to
choose your expiration time:

 components:
 headers:
 - Idempotency-Key:
 description: |
 The idempotency key is a free identifier created by the client to
 identify a request. It is used by the service to identify subsequent
 retries of the same request and ensure idempotent behavior by sending
 the same response without executing the request a second time.

 Clients should be careful as any subsequent requests with the same key
 may return the same response without further check. Therefore, it is
 recommended to use an UUID version 4 (random) or any other random
 string with enough entropy to avoid collisions.

 Idempotency keys expire after 24 hours. Clients are responsible to stay
 within this limits, if they require idempotent behavior.

 type: string
 format: uuid
 required: false
 example: "7da7a728-f910-11e6-942a-68f728c1ba70"

Hint: The key cache is not intended as request log, and therefore should
have a limited lifetime, else it could easily exceed the data resource in
size.

Note: The Idempotency-Key header unlike other headers in this section
is not standardized in an RFC. Our only reference are the usage in the
Stripe API. However, as it
fit not into our section about proprietary-headers, and we did not want
to change the header name and semantic, we decided to treat it as any other
common header.

19. API Operation

MUST publish OpenAPI specification

 All service applications must publish OpenAPI specifications of their external
APIs. While this is optional for internal APIs, i.e. APIs marked with the
component-internal API audience group, we still recommend to do so
to profit from the API management infrastructure.

IDN APIs are published from an internal GitHub repository. All other APIs will
need to be submitted to the Developer Relations team for publishing.

MUST monitor API usage

 Owners of APIs used in production should monitor API service to get
information about its using clients. This information, for instance, is
useful to identify potential review partner for API changes.

Hint: A preferred way of client detection implementation is by logging
of the client-id retrieved from the OAuth token.

Appendix A: References

 This section collects links to documents to which we refer, and base our guidelines on.

OpenAPI specification

	
OpenAPI specification

	
OpenAPI specification mind map

Publications, specifications and standards

	
RFC 3339: Date and Time on the Internet: Timestamps

	
RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace

	
RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON)

	
RFC 8288: Web Linking

	
RFC 6585: Additional HTTP Status Codes

	
RFC 6902: JavaScript Object Notation (JSON) Patch

	
RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format

	
RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

	
RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

	
RFC 7232: Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests

	
RFC 7233: Hypertext Transfer Protocol (HTTP/1.1): Range Requests

	
RFC 7234: Hypertext Transfer Protocol (HTTP/1.1): Caching

	
RFC 7240: Prefer Header for HTTP

	
RFC 7396: JSON Merge Patch

	
RFC 7807: Problem Details for HTTP APIs

	
RFC 4648: The Base16, Base32, and Base64 Data Encodings

	
ISO 8601: Date and time format

	
ISO 3166-1 alpha-2: Two letter country codes

	
ISO 639-1: Two letter language codes

	
ISO 4217: Currency codes

	
BCP 47: Tags for Identifying Languages

Dissertations

	
Roy Thomas
Fielding - Architectural Styles and the Design of Network-Based Software
Architectures: This is the text which defines what REST is.

Books

	
REST in Practice: Hypermedia and Systems Architecture

	
Build APIs You Won’t Hate

	
InfoQ eBook - Web APIs: From Start to Finish

Blogs

	
Lessons-learned blog: Thoughts on RESTful API Design

Appendix B: Tooling

 This is not a part of the actual guidelines, but might be helpful for following them.
Using a tool mentioned here doesn’t automatically ensure you follow the guidelines.

API first integrations

 The following software was specifically designed to support the API First
workflow with OpenAPI YAML files (sorted alphabetically):

	
API Linter:
SailPoint’s API linter using Spectral

The Swagger/OpenAPI homepage lists more
Community-Driven Language
Integrations, but most of them do not fit our API First approach.

Appendix C: Best practices

 The best practices presented in this section are not part of the actual
guidelines, but should provide guidance for common challenges we face when
implementing RESTful APIs.

Cursor-based pagination in RESTful APIs

 Cursor-based pagination is a very powerful and valuable technique,
that allows to efficiently provide a stable view on changing data.
This is obtained by using an anchor element that allows to retrieve all page
elements directly via an ordering combined-index, usually based on created_at
or modified_at. Simple said, the cursor is the information set needed to
reconstruct the database query to retrieves the minimal page information from
the data storage.

The cursor itself is an opaque string, transmitted forth and back between
service and clients, that must never be inspected or constructed by
clients. Therefore, it is good practice to encode (encrypt) its content in a
non-human-readable form.

The cursor content usually consists of a pointer to the anchor element
defining the page position in the collection, a flag whether the element is
included or excluded into/from the page, the retrieval direction, and a hash
over the applied query filters (or the query filter itself) to safely re-create
the collection. It is important to note, that a cursor should be always
defined in relation to the current page to anticipate all occurring changes
when progressing.

The cursor is usually defined as an encoding of the following information:

 Cursor:
 descriptions: >
 Cursor structure that contains all necessary information to efficiently
 retrieve a page from the data store.
 type: object
 properties:
 position:
 description: >
 Object containing the keys pointing to the anchor element that is
 defining the collection resource page. Normally the position is given
 by the first or the last page element. The position object contains all
 values required to access the element efficiently via the ordered,
 combined index, e.g `modified_at`, `id`.
 type: object
 properties: ...

 element:
 description: >
 Flag whether the anchor element, which is pointed to by the `position`,
 should be *included* or *excluded* from the result set. Normally, only
 the current page includes the pointed to element, while all others are
 exclude it.
 type: string
 enum: [INCLUDED, EXCLUDED]

 direction:
 description: >
 Flag for the retrieval direction that is defining which elements to
 choose from the collection resource starting from the anchor elements
 position. It is either *ascending* or *descending* based on the
 ordering combined index.
 type: string
 enum: [ASCENDING, DESCENDING]

 query_hash:
 description: >
 Stable hash calculated over all query filters applied to create the
 collection resource that is represented by this cursor.
 type: string

 query:
 description: >
 Object containing all query filters applied to create the collection
 resource that is represented by this cursor.
 type: object
 properties: ...

 required:
 - position
 - element
 - direction

Note: In case of complex and long search requests, e.g. when GET with body
is already required, the cursor may not be able to include the query because
of common HTTP parameter size restrictions. In this case the query filters
should be transported via body - in the request as well as in the response,
while the pagination consistency should be ensured via the query_hash.

Remark: It is also important to check the efficiency of the data-access.
You need to make sure that you have a fully ordered stable index, that allows
to efficiently resolve all elements of a page. If necessary, you need to
provide a combined index that includes the id to ensure the full order and
additional filter criteria to ensure efficiency.

Further reading

	
Twitter

	
Use the Index, Luke

	
Paging
in PostgreSQL

Optimistic locking in RESTful APIs

Introduction

 Optimistic locking might be used to avoid concurrent writes on the same entity,
which might cause data loss. A client always has to retrieve a copy of an
entity first and specifically update this one. If another version has been
created in the meantime, the update should fail. In order to make this work,
the client has to provide some kind of version reference, which is checked by
the service, before the update is executed. Please read the more detailed
description on how to update resources via PUT in the HTTP Requests
Section.

A RESTful API usually includes some kind of search endpoint, which will then
return a list of result entities. There are several ways to implement
optimistic locking in combination with search endpoints which, depending on the
approach chosen, might lead to performing additional requests to get the
current version of the entity that should be updated.

ETag with If-Match header

 An ETag can only be obtained by performing a GET request on the single
entity resource before the update, i.e. when using a search endpoint an
additional request is necessary.

Example:

 < GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042" },
> { "id": "O0000043" }
>]
> }

< GET /orders/BO0000042

> HTTP/1.1 200 OK
> ETag: osjnfkjbnkq3jlnksjnvkjlsbf
> { "id": "BO0000042", ... }

< PUT /orders/O0000042
< If-Match: osjnfkjbnkq3jlnksjnvkjlsbf
< { "id": "O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

 > HTTP/1.1 412 Precondition failed

Pros

	
RESTful solution

Cons

	
Many additional requests are necessary to build a meaningful front-end

ETags in result entities

 The ETag for every entity is returned as an additional property of that entity.
In a response containing multiple entities, every entity will then have a
distinct ETag that can be used in subsequent PUT requests.

In this solution, the etag property should be readonly and never be expected
in the PUT request payload.

Example:

 < GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042", "etag": "osjnfkjbnkq3jlnksjnvkjlsbf", "foo": 42, "bar": true },
> { "id": "O0000043", "etag": "kjshdfknjqlowjdsljdnfkjbkn", "foo": 24, "bar": false }
>]
> }

< PUT /orders/O0000042
< If-Match: osjnfkjbnkq3jlnksjnvkjlsbf
< { "id": "O0000042", "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

 > HTTP/1.1 412 Precondition failed

Pros

	
Perfect optimistic locking

Cons

	
Information that only belongs in the HTTP header is part of the business
objects

Version numbers

 The entities contain a property with a version number. When an update is
performed, this version number is given back to the service as part of the
payload. The service performs a check on that version number to make sure it
was not incremented since the consumer got the resource and performs the
update, incrementing the version number.

Since this operation implies a modification of the resource by the service, a
POST operation on the exact resource (e.g. POST /orders/O0000042) should be
used instead of a PUT.

In this solution, the version property is not readonly since it is provided
at POST time as part of the payload.

Example:

 < GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042", "version": 1, "foo": 42, "bar": true },
> { "id": "O0000043", "version": 42, "foo": 24, "bar": false }
>]
> }

< POST /orders/O0000042
< { "id": "O0000042", "version": 1, "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

or if there was an update since the GET and the version number in the
database is higher than the one given in the request body:

 > HTTP/1.1 409 Conflict

Pros

	
Perfect optimistic locking

Cons

	
Functionality that belongs into the HTTP header becomes part of the
business object

	
Using POST instead of PUT for an update logic (not a problem in itself,
but may feel unusual for the consumer)

Last-Modified / If-Unmodified-Since

 In HTTP 1.0 there was no ETag and the mechanism used for optimistic locking
was based on a date. This is still part of the HTTP protocol and can be used.
Every response contains a Last-Modified header with a HTTP date. When
requesting an update using a PUT request, the client has to provide this
value via the header If-Unmodified-Since. The server rejects the request, if
the last modified date of the entity is after the given date in the header.

This effectively catches any situations where a change that happened between
GET and PUT would be overwritten. In the case of multiple result entities,
the Last-Modified header will be set to the latest date of all the entities.
This ensures that any change to any of the entities that happens between GET
and PUT will be detectable, without locking the rest of the batch as well.

Example:

 < GET /orders

> HTTP/1.1 200 OK
> Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
> {
> "items": [
> { "id": "O0000042", ... },
> { "id": "O0000043", ... }
>]
> }

< PUT /block/O0000042
< If-Unmodified-Since: Wed, 22 Jul 2009 19:15:56 GMT
< { "id": "O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entities last modified is
later than the given date:

 > HTTP/1.1 412 Precondition failed

Pros

	
Well established approach that has been working for a l